副标题:无

作   者:

分类号:

ISBN:9780471457572

微信扫一扫,移动浏览光盘

简介

Concise and focused-these are the two guiding principles of Young, Munson, and Okiishi's Third Edition of A Brief Introduction to Fluid Mechanics. The authors clearly present basic analysis techniques and address practical concerns and applications, such as pipe flow, open-channel flow, flow measurement, and drag and lift. Homework problems in every chapter-including open-ended problems, problems based on the CD-ROM videos, laboratory problems, and computer problems-emphasize the practical application of principles. More than 100 worked examples provide detailed solutions to a variety of problems. The Third Edition offers several new features and enhancements, including: A variety of new simple figures in the margins that will help you visualize the concepts described in the text. Chapter Summary and Study Guide sections at the end of each chapter that will help you assess your understanding of the material. Simplified presentation of the Reynolds transport theorem. New homework problems added to every chapter. Highlighted key works in each chapter. Experience fluid flow phenomena in action on a new CD-ROM! The Fluid Mechanics Phenomena CD-ROM packaged with this text presents: 75 short video segments that illustrate various aspects of fluid mechanics 30 extended laboratory-type problems Actual experimental data for simple experiments in an Excel format 168 review problems.

目录

Table Of Contents:
1 INTRODUCTION 1(27)

1.1 Some Characteristics of Fluids 1(1)

1.2 Dimensions, Dimensional Homogeneity, and Units 2(5)

1.2.1 Systems of Units 5(2)

1.3 Analysis of Fluid Behavior 7(1)

1.4 Measures of Fluid Mass and Weight 7(2)

1.4.1 Density 7(1)

1.4.2 Specific Weight 8(1)

1.4.3 Specific Gravity 9(1)

1.5 Ideal Gas Law 9(2)

1.6 Viscosity 11(5)

1.7 Compressibility of Fluids 16(3)

1.7.1 Bulk Modulus 16(1)

1.7.2 Compression and Expansion of Gases 16(1)

1.7.3 Speed of Sound 17(2)

1.8 Vapor Pressure 19(1)

1.9 Surface Tension 19(3)

1.10 Chapter Summary and Study Guide 22(1)

Problems 23(5)
2 FLUID STATICS 28(41)

2.1 Pressure at a Point 28(2)

2.2 Basic Equation for Pressure Field 30(2)

2.3 Pressure Variation in a Fluid at Rest 32(3)

2.3.1 Incompressible Fluid 32(3)

2.3.2 Compressible Fluid 35(1)

2.4 Standard Atmosphere 35(1)

2.5 Measurement of Pressure 36(2)

2.6 Manometry 38(5)

2.6.1 Piezometer Tube 38(1)

2.6.2 U-Tube Manometer 39(3)

2.6.3 Inclined-Tube Manometer 42(1)

2.7 Mechanical and Electronic Pressure Measuring Devices 43(1)

2.8 Hydrostatic Force on a Plane Surface 44(5)

2.9 Pressure Prism 49(3)

2.10 Hydrostatic Force on a Curved Surface 52(2)

2.11 Buoyancy, Flotation, and Stability 54(3)

2.11.1 Archimedes' Principle 54(2)

2.11.2 Stability 56(1)

2.12 Pressure Variation in a Fluid with Rigid-Body Motion 57(1)

2.13 Chapter Summary and Study Guide 57(1)

References 58(1)

Problems 59(10)
3 ELEMENTARY FLUID DYNAMICS-THE BERNOULLI EQUATION 69(39)

3.1 Newton's Second Law 69(1)

3.2 F = ma Along a Streamline 70(5)

3.3 F = ma Normal to a Streamline 75(2)

3.4 Physical Interpretation 77(3)

3.5 Static, Stagnation, Dynamic, and Total Pressure 80(3)

3.6 Examples of Use of the Bernoulli Equation 83(12)

3.6.1 Free Jets 83(1)

3.6.2 Confined Flows 84(7)

3.6.3 Flowrate Measurement 91(4)

3.7 The Energy Line and the Hydraulic Grade Line 95(3)

3.8 Restrictions on the Use of the Bernoulli Equation 98(1)

3.9 Chapter Summary and Study Guide 99(1)

Problems 99(9)
4 FLUID KINEMATICS 108(26)

4.1 The Velocity Field 108(9)

4.1.1 Eulerian and Lagrangian Flow Descriptions 110(1)

4.1.2 One-, Two-, and Three Dimensional Flows 111(1)

4.1.3 Steady and Unsteady Flows 112(1)

4.1.4 Streamlines, Streaklines, and Pathlines 112(5)

4.2 The Acceleration Field 117(5)

4.2.1 The Material Derivative 117(2)

4.2.2 Unsteady Effects 119(1)

4.2.3 Convective Effects 120(1)

4.2.4 Streamline Coordinates 121(1)

4.3 Control Volume and System Representations 122(1)

4.4 The Reynolds Transport Theorem 123(5)

4.4.1 Derivation of the Reynolds Transport Theorem 124(3)

4.4.2 Selection of a Control Volume 127(1)

4.5 Chapter Summary and Study Guide 128(1)

References 129(1)

Problems 129(5)
5 FINITE CONTROL VOLUME ANALYSIS 134(65)

5.1 Conservation of Mass-The Continuity Equation 134(9)

5.1.1 Derivation of the Continuity Equation 134(2)

5.1.2 Fixed, Nondeforming Control Volume 136(5)

5.1.3 Moving, Nondeforming Control Volume 141(2)

5.2 Newton's Second Law The Linear Momentum and Moment of-Momentum Equations 143(25)

5.2.1 Derivation of the Linear Momentum Equation 143(1)

5.2.2 Application of the Linear Momentum Equation 144(14)

5.2.3 Derivation of the Moment-of Momentum Equation 158(2)

5.2.4 Application of the Moment-of-Momentum Equation 160(8)

5.3 First Law of Thermodynamics The Energy Equation 168(16)

5.3.1 Derivation of the Energy Equation 168(3)

5.3.2 Application of the Energy Equation 171(3)

5.3.3 Comparison of the Energy Equation with the Bernoulli Equation 174(7)

5.3.4 Application of the Energy Equation to Nonuniform Flows 181(3)

5.4 Chapter Summary and Study Guide 184(1)

Problems 185(14)
6 DIFFERENTIAL ANALYSIS OF FLUID FLOW 199(70)

6.1 Fluid Element Kinematics 200(6)

6.1.1 Velocity and Acceleration Fields Revisited 200(1)

6.1.2 Linear Motion and Deformation 201(1)

6.1.3 Angular Motion and Deformation 202(4)

6.2 Conservation of Mass 206(7)

6.2.1 Differential Form of Continuity Equation 206(2)

6.2.2 Cylindrical Polar Coordinates 208(1)

6.2.3 The Stream Function 209(4)

6.3 Conservation of Linear Momentum 213(4)

6.3.1 Description of Forces Acting on Differential Element 214(2)

6.3.2 Equations of Motion 216(1)

6.4 Inviscid Flow 217(9)

6.4.1 Euler's Equations of Motion 217(1)

6.4.2 The Bernoulli Equation 218(2)

6.4.3 Irrotational Flow 220(1)

6.4.4 The Bernoulli Equation for Irrotational Flow 221(1)

6.4.5 The Velocity Potential 221(5)

6.5 Some Basic, Plane Potential Flows 226(10)

6.5.1 Uniform Flow 227(1)

6.5.2 Source and Sink 228(2)

6.5.3 Vortex 230(4)

6.5.4 Doublet 234(2)

6.6 Superposition of Basic, Plane Potential Flows 236(11)

6.6.1 Source in a Uniform Stream-Half-Body 236(5)

6.6.2 Flow around a Circular Cylinder 241(6)

6.7 Other Aspects of Potential Flow Analysis 247(1)

6.8 Viscous Flow 247(3)

6.8.1 Stress-Deformation Relationships 247(2)

6.8.2 The Navier-Stokes Equations 249(1)

6.9 Some Simple Solutions for Viscous, Incompressible Fluids 250(8)

6.9.1 Steady, Laminar Flow between Fixed Parallel Plates 250(3)

6.9.2 Couette Flow 253(3)

6.9.3 Steady, Laminar Flow in Circular Tubes 256(2)

6.10 Other Aspects of Differential Analysis 258(1)

6.11 Chapter Summary and Study Guide 259(1)

References 260(1)

Problems 260(9)
7 SIMILITUDE, DIMENSIONAL ANALYSIS, AND MODELING 269(40)

7.1 Dimensional Analysis 269(2)

7.2 Buckingham Pi Theorem 271(1)

7.3 Determination of Pi Terms 272(6)

7.4 Some Additional Comments about Dimensional Analysis 278(2)

7.4.1 Selection of Variables 278(1)

7.4.2 Determination of Reference Dimensions 279(1)

7.4.3 Uniqueness of Pi Terms 279(1)

7.5 Determination of Pi Terms by Inspection 280(1)

7.6 Common Dimensionless Groups in Fluid Mechanics 281(1)

7.7 Correlation of Experimental Data 282(5)

7.7.1 Problems with One Pi Term 283(1)

7.7.2 Problems with Two or More Pi Terms 284(3)

7.8 Modeling and Similitude 287(6)

7.8.1 Theory of Models 287(4)

7.8.2 Model Scales 291(1)

7.8.3 Distorted Models 292(1)

7.9 Some Typical Model Studies 293(7)

7.9.1 Flow through Closed Conduits 293(2)

7.9.2 Flow around Immersed Bodies 295(3)

7.9.3 Flow with a Free Surface 298(2)

7.10 Chapter Summary and Study Guide 300(1)

References 301(1)

Problems 301(8)
8 VISCOUS FLOW IN PIPES 309(53)

8.1 General Characteristics of Pipe Flow 309(4)

8.1.1 Laminar or Turbulent Flow 310(2)

8.1.2 Entrance Region and Fully Developed Flow 312(1)

8.2 Fully Developed Laminar Flow 313(5)

8.2.1 From F = ma Applied to a Fluid Element 313(5)

8.2.2 From the Navier-Stokes Equations 318(1)

8.3 Fully Developed Turbulent Flow 318(3)

8.3.1 Transition from Laminar to Turbulent Flow 318(1)

8.3.2 Turbulent Shear Stress 319(1)

8.3.3 Turbulent Velocity Profile 320(1)

8.4 Dimensional Analysis of Pipe Flow 321(15)

8.4.1 Major Losses 321(5)

8.4.2 Minor Losses 326(8)

8.4.3 Noncircular Conduits 334(2)

8.5 Pipe Flow Examples 336(11)

8.5.1 Single Pipes 336(10)

8.5.2 Multiple Pipe Systems 346(1)

8.6 Pipe Flowrate Measurement 347(5)

8.7 Chapter Summary and Study Guide 352(1)

References 352(1)

Problems 353(9)
9 FLOW OVER IMMERSED BODIES 362(55)

9.1 General External Flow Characteristics 362(8)

9.1.1 Lift and Drag Concepts 363(4)

9.1.2 Characteristics of Flow Past an Object 367(3)

9.2 Boundary Layer Characteristics 370(15)

9.2.1 Boundary Layer Structure and Thickness on a Flat Plate 370(2)

9.2.2 Prandtl/Blasius Boundary Layer Solution 372(1)

9.2.3 Momentum Integral Boundary Layer Equation for a Flat Plate 373(4)

9.2.4 Transition from Laminar to Turbulent Flow 377(2)

9.2.5 Turbulent Boundary Layer Flow 379(3)

9.2.6 Effects of Pressure Gradient 382(3)

9.3 Drag 385(17)

9.3.1 Friction Drag 386(1)

9.3.2 Pressure Drag 386(1)

9.3.3 Drag Coefficient Data and Examples 387(15)

9.4 Lift 402(6)

9.4.1 Surface Pressure Distribution 402(4)

9.4.2 Circulation 406(2)

9.5 Chapter Summary and Study Guide 408(1)

References 408(1)

Problems 409(8)
10 OPEN-CHANNEL FLOW 417(37)

10.1 General Characteristics of Open-Channel Flow 417(1)

10.2 Surface Waves 418(3)

10.2.1 Wave Speed 418(3)

10.2.2 Froude Number Effects 421(1)

10.3 Energy Considerations 421(3)

10.3.1 Specific Energy 422(2)

10.4 Uniform Depth Channel Flow 424(9)

10.4.1 Uniform Flow Approximations 424(1)

10.4.2 The Chezy and Manning Equations 425(1)

10.4.3 Uniform Depth Examples 426(7)

10.5 Gradually Varied Flow 433(1)

10.6 Rapidly Varied Flow 434(12)

10.6.1 The Hydraulic Jump 434(5)

10.6.2 Sharp-Crested Weirs 439(2)

10.6.3 Broad-Crested Weirs 441(4)

10.6.4 Underflow Gates 445(1)

10.7 Chapter Summary and Study Guide 446(1)

References 447(1)

Problems 447(7)
11 TURBOMACHI NES 454(46)

11.1 Introduction 455(1)

11.2 Basic Energy Considerations 456(3)

11.3 Basic Angular Momentum Considerations 459(2)

11.4 The Centrifugal Pump 461(10)

11.4.1 Theoretical Considerations 461(4)

11.4.2 Pump Performance Characteristics 465(3)

11.4.3 System Characteristics and Pump Selection 468(3)

11.5 Dimensionless Parameters and Similarity Laws 471(5)

11.5.1 Specific Speed 415(61)

11.6 Axial-Flow and Mixed-Flow Pumps 476(2)

11.7 Turbines 478(12)

11.7.1 Impulse Turbines 419(67)

11.7.2 Reaction Turbines 486(4)

11.8 Compressible Flow Turbomachines 490(1)

11.9 Chapter Summary and Study Guide 491(1)

References 492(1)

Problems 492(8)
A UNIT CONVERSION TABLES 500(4)
B PHYSICAL PROPERTIES OF FLUIDS 504(6)
C PROPERTIES OF THE U.S. STANDARD ATMOSPHERE 510(2)
D REYNOLDS TRANSPORT THEOREM 512(7)

D.1 General Reynolds Transport Theorem 512(3)

D.2 General Control Volume Equations 515(4)
ANSWERS 519(4)
INDEX 523

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    亲爱的云图用户,
    光盘内的文件都可以直接点击浏览哦

    无需下载,在线查阅资料!

    loading icon