简介
"Computer Vision and Applications offers a fresh approach to computer vision by covering in a single volume the entire spectrum of computer vision ranging from the imaging process to high-end algorithms and applications. Computer vision is understood as the host of techniques used to acquire, process, analyze, and understand complex,higher-dimensional data from the environment for scientific and technical exploration. This book takes intoaccount the interdisciplinary nature of computer vision with its links to virtually all natural sciences and attempts to bridge the gap between basic research and applications." "Computer Vision and Applications is the perfect basic reference for graduate students, scientists,and practitioners in industry who wish to gain a broader understanding of the subject and who are interested in discovering how computer vision concepts can be applied tovarious areas of scientific and technical research. The advanced reader will find detailed information on selectedtopics and references to extended subjects."--BOOK JACKET.
目录
Preface p. xi
Contributors p. xv
1 Introduction B. Jahne p. 1
1.1 Components of a vision system p. 1
1.2 Imaging systems p. 2
1.3 Signal processing for computer vision p. 3
1.4 Pattern recognition for computer vision p. 4
1.5 Performance evaluation of algorithms p. 5
1.6 Classes of tasks p. 6
1.7 References p. 8
I Sensors and Imaging
2 Radiation and Illumination H. Haussecker p. 11
2.1 Introduction p. 12
2.2 Fundamentals of electromagnetic radiation p. 13
2.3 Radiometric quantities p. 17
2.4 Fundamental concepts of photometry p. 27
2.5 Interaction of radiation with matter p. 31
2.6 Illumination techniques p. 46
2.7 References p. 51
3 Imaging Optics P. Geissler p. 53
3.1 Introduction p. 54
3.2 Basic concepts of geometric optics p. 54
3.3 Lenses p. 56
3.4 Optical properties of glasses p. 66
3.5 Aberrations p. 67
3.6 Optical image formation p. 75
3.7 Wave and Fourier optics p. 80
3.8 References p. 84
4 Radiometry of Imaging H. Haussecker p. 85
4.1 Introduction p. 85
4.2 Observing surfaces p. 86
4.3 Propagating radiance p. 88
4.4 Radiance of imaging p. 91
4.5 Detecting radiance p. 94
4.6 Concluding summary p. 108
4.7 References p. 109
5 Solid-State Image Sensing P. Seitz p. 111
5.1 Introduction p. 112
5.2 Fundamentals of solid-state photosensing p. 113
5.3 Photocurrent processing p. 120
5.4 Transportation of photosignals p. 127
5.5 Electronic signal detection p. 130
5.6 Architectures of image sensors p. 134
5.7 Color vision and color imaging p. 139
5.8 Practical limitations of semiconductor photosensors p. 146
5.9 Conclusions p. 148
5.10 References p. 149
6 Geometric Calibration of Digital Imaging Systems R. Godding p. 153
6.1 Introduction p. 153
6.2 Calibration terminology p. 154
6.3 Parameters influencing geometrical performance p. 155
6.4 Optical systems model of image formation p. 157
6.5 Camera models p. 158
6.6 Calibration and orientation techniques p. 163
6.7 Photogrammetric applications p. 170
6.8 Summary p. 173
6.9 References p. 173
7 Three-Dimensional Imaging Techniques R. Schwarte and G. Hausler and R. W. Malz p. 177
7.1 Introduction p. 178
7.2 Characteristics of 3-D sensors p. 179
7.3 Triangulation p. 182
7.4 Time-of-flight (TOF) of modulated light p. 196
7.5 Optical Interferometry (OF) p. 199
7.6 Conclusion p. 205
7.7 References p. 205
II Signal Processing and Pattern Recognition
8 Representation of Multidimensional Signals B. Jahne p. 211
8.1 Introduction p. 212
8.2 Continuous signals p. 212
8.3 Discrete signals p. 215
8.4 Relation between continuous and discrete signals p. 224
8.5 Vector spaces and unitary transforms p. 232
8.6 Continuous Fourier transform (FT) p. 237
8.7 The discrete Fourier transform (DFT) p. 246
8.8 Scale of signals p. 252
8.9 Scale space and diffusion p. 260
8.10 Multigrid representations p. 267
8.11 References p. 271
9 Neighborhood Operators B. Jahne p. 273
9.1 Basics p. 274
9.2 Linear shift-invariant filters p. 278
9.3 Recursive filters p. 285
9.4 Classes of nonlinear filters p. 292
9.5 Local averaging p. 296
9.6 Interpolation p. 311
9.7 Edge detection p. 325
9.8 Tensor representation of simple neighborhoods p. 335
9.9 References p. 344
10 Motion H. Haussecker and H. Spies p. 347
10.1 Introduction p. 347
10.2 Basics: flow and correspondence p. 349
10.3 Optical flow-based motion estimation p. 358
10.4 Quadrature filter techniques p. 372
10.5 Correlation and matching p. 379
10.6 Modeling of flow fields p. 382
10.7 References p. 392
11 Three-Dimensional Imaging Algorithms P. Geissler and T. Dierig and H. A. Mallot p. 397
11.1 Introduction p. 397
11.2 Stereopsis p. 398
11.3 Depth-from-focus p. 414
11.4 References p. 435
12 Design of Nonlinear Diffusion Filters J. Weickert p. 439
12.1 Introduction p. 439
12.2 Filter design p. 440
12.3 Parameter selection p. 448
12.4 Extensions p. 451
12.5 Relations to variational image restoration p. 452
12.6 Summary p. 454
12.7 References p. 454
13 Variational Adaptive Smoothing and Segmentation C. Schnorr p. 459
13.1 Introduction p. 459
13.2 Processing of two- and three-dimensional images p. 463
13.3 Processing of vector-valued images p. 474
13.4 Processing of image sequences p. 476
13.5 References p. 480
14 Morphological Operators P. Soille p. 483
14.1 Introduction p. 483
14.2 Preliminaries p. 484
14.3 Basic morphological operators p. 489
14.4 Advanced morphological operators p. 495
14.5 References p. 515
15 Probabilistic Modeling in Computer Vision J. Hornegger and D. Paulus and H. Niemann p. 517
15.1 Introduction p. 517
15.2 Why probabilistic models? p. 518
15.3 Object recognition as probabilistic modeling p. 519
15.4 Model densities p. 524
15.5 Practical issues p. 536
15.6 Summary, conclusions, and discussion p. 538
15.7 References p. 539
16 Fuzzy Image Processing H. Haussecker and H. R. Tizhoosh p. 541
16.1 Introduction p. 541
16.2 Fuzzy image understanding p. 548
16.3 Fuzzy image processing systems p. 553
16.4 Theoretical components of fuzzy image processing p. 556
16.5 Selected application examples p. 564
16.6 Conclusions p. 570
16.7 References p. 571
17 Neural Net Computing for Image Processing A. Meyer-Base p. 577
17.1 Introduction p. 577
17.2 Multilayer perceptron (MLP) p. 579
17.3 Self-organizing neural networks p. 585
17.4 Radial-basis neural networks (RBNN) p. 590
17.5 Transformation radial-basis networks (TRBNN) p. 593
17.6 Hopfield neural networks p. 596
17.7 Application examples of neural networks p. 601
17.8 Concluding remarks p. 604
17.9 References p. 605
III Application Gallery
A Application Gallery p. 609
A1 Object Recognition with Intelligent Cameras T. Wagner and P. Plankensteiner p. 610
A2 3-D Image Metrology of Wing Roots H. Beyer p. 612
A3 Quality Control in a Shipyard H.-G. Maas p. 614
A4 Topographical Maps of Microstructures Torsten Scheuermann and Georg Wiora and Matthias Graf p. 616
A5 Fast 3-D Full Body Scanning for Humans and Other Objects N. Stein and B. Minge p. 618
A6 Reverse Engineering Using Optical Range Sensors S. Karbacher and G. Hausler p. 620
A7 3-D Surface Reconstruction from Image Sequences R. Koch and M. Pollefeys and L. Von Gool p. 622
A8 Motion Tracking R. Frischholz p. 624
A9 Tracking "Fuzzy" Storms in Doppler Radar Images J.L. Barron and R.E. Mercer and D. Cheng and P. Joe p. 626
A10 3-D Model-Driven Person Detection Ch. Ridder and O. Munkelt and D. Hansel p. 628
A11 Knowledge-Based Image Retrieval Th. Hermes and O. Herzog p. 630
A12 Monitoring Living Biomass with in situ Microscopy P. Geissler and T. Scholz p. 632
A13 Analyzing Size Spectra of Oceanic Air Bubbles P. Geissler and B. Jahne p. 634
A14 Thermography to Measure Water Relations of Plant Leaves B. Kummerlen and S. Dauwe and D. Schmundt and U. Schurr p. 636
A15 Small-Scale Air-Sea Interaction with Thermography U. Schimpf and H. Haussecker and B. Jahne p. 638
A16 Optical Leaf Growth Analysis D. Schmundt and U. Schurr p. 640
A17 Analysis of Motility Assay Data D. uttenweiler and R. H. A. Fink p. 642
A18 Fluorescence Imaging of Air-Water Gas Exchange S. Eichkorn and T. Munsterer and U. Lode and B. Jahne p. 644
A19 Particle-Tracking Velocimetry D. Engelmann and M. Stohr and C. Garbe and F. Hering p. 646
A20 Analyzing Particle Movements at Soil Interfaces H. Spies and H. Groning and H. Haussecker p. 648
A21 3-D Velocity Fields from Flow Tomography Data H.-G. Maas p. 650
A22 Cloud Classification Analyzing Image Sequences M. Wenig and C. Leue p. 652
A23 No[subscript X] Emissions Retrieved from Satellite Images C. Leue and M. Wenig and U. Platt p. 654
A24 Multicolor Classification of Astronomical Objects C. Wolf and K. Meisenheimer and H.-J. Roeser p. 656
A25 Model-Based Fluorescence Imaging D. Uttenweiler and R. H. A. Fink p. 658
A26 Analyzing the 3-D Genome Topology H. Bornfleth and P. Edelmann and C. Cremer p. 660
A27 References p. 662
Index p. 667
Contributors p. xv
1 Introduction B. Jahne p. 1
1.1 Components of a vision system p. 1
1.2 Imaging systems p. 2
1.3 Signal processing for computer vision p. 3
1.4 Pattern recognition for computer vision p. 4
1.5 Performance evaluation of algorithms p. 5
1.6 Classes of tasks p. 6
1.7 References p. 8
I Sensors and Imaging
2 Radiation and Illumination H. Haussecker p. 11
2.1 Introduction p. 12
2.2 Fundamentals of electromagnetic radiation p. 13
2.3 Radiometric quantities p. 17
2.4 Fundamental concepts of photometry p. 27
2.5 Interaction of radiation with matter p. 31
2.6 Illumination techniques p. 46
2.7 References p. 51
3 Imaging Optics P. Geissler p. 53
3.1 Introduction p. 54
3.2 Basic concepts of geometric optics p. 54
3.3 Lenses p. 56
3.4 Optical properties of glasses p. 66
3.5 Aberrations p. 67
3.6 Optical image formation p. 75
3.7 Wave and Fourier optics p. 80
3.8 References p. 84
4 Radiometry of Imaging H. Haussecker p. 85
4.1 Introduction p. 85
4.2 Observing surfaces p. 86
4.3 Propagating radiance p. 88
4.4 Radiance of imaging p. 91
4.5 Detecting radiance p. 94
4.6 Concluding summary p. 108
4.7 References p. 109
5 Solid-State Image Sensing P. Seitz p. 111
5.1 Introduction p. 112
5.2 Fundamentals of solid-state photosensing p. 113
5.3 Photocurrent processing p. 120
5.4 Transportation of photosignals p. 127
5.5 Electronic signal detection p. 130
5.6 Architectures of image sensors p. 134
5.7 Color vision and color imaging p. 139
5.8 Practical limitations of semiconductor photosensors p. 146
5.9 Conclusions p. 148
5.10 References p. 149
6 Geometric Calibration of Digital Imaging Systems R. Godding p. 153
6.1 Introduction p. 153
6.2 Calibration terminology p. 154
6.3 Parameters influencing geometrical performance p. 155
6.4 Optical systems model of image formation p. 157
6.5 Camera models p. 158
6.6 Calibration and orientation techniques p. 163
6.7 Photogrammetric applications p. 170
6.8 Summary p. 173
6.9 References p. 173
7 Three-Dimensional Imaging Techniques R. Schwarte and G. Hausler and R. W. Malz p. 177
7.1 Introduction p. 178
7.2 Characteristics of 3-D sensors p. 179
7.3 Triangulation p. 182
7.4 Time-of-flight (TOF) of modulated light p. 196
7.5 Optical Interferometry (OF) p. 199
7.6 Conclusion p. 205
7.7 References p. 205
II Signal Processing and Pattern Recognition
8 Representation of Multidimensional Signals B. Jahne p. 211
8.1 Introduction p. 212
8.2 Continuous signals p. 212
8.3 Discrete signals p. 215
8.4 Relation between continuous and discrete signals p. 224
8.5 Vector spaces and unitary transforms p. 232
8.6 Continuous Fourier transform (FT) p. 237
8.7 The discrete Fourier transform (DFT) p. 246
8.8 Scale of signals p. 252
8.9 Scale space and diffusion p. 260
8.10 Multigrid representations p. 267
8.11 References p. 271
9 Neighborhood Operators B. Jahne p. 273
9.1 Basics p. 274
9.2 Linear shift-invariant filters p. 278
9.3 Recursive filters p. 285
9.4 Classes of nonlinear filters p. 292
9.5 Local averaging p. 296
9.6 Interpolation p. 311
9.7 Edge detection p. 325
9.8 Tensor representation of simple neighborhoods p. 335
9.9 References p. 344
10 Motion H. Haussecker and H. Spies p. 347
10.1 Introduction p. 347
10.2 Basics: flow and correspondence p. 349
10.3 Optical flow-based motion estimation p. 358
10.4 Quadrature filter techniques p. 372
10.5 Correlation and matching p. 379
10.6 Modeling of flow fields p. 382
10.7 References p. 392
11 Three-Dimensional Imaging Algorithms P. Geissler and T. Dierig and H. A. Mallot p. 397
11.1 Introduction p. 397
11.2 Stereopsis p. 398
11.3 Depth-from-focus p. 414
11.4 References p. 435
12 Design of Nonlinear Diffusion Filters J. Weickert p. 439
12.1 Introduction p. 439
12.2 Filter design p. 440
12.3 Parameter selection p. 448
12.4 Extensions p. 451
12.5 Relations to variational image restoration p. 452
12.6 Summary p. 454
12.7 References p. 454
13 Variational Adaptive Smoothing and Segmentation C. Schnorr p. 459
13.1 Introduction p. 459
13.2 Processing of two- and three-dimensional images p. 463
13.3 Processing of vector-valued images p. 474
13.4 Processing of image sequences p. 476
13.5 References p. 480
14 Morphological Operators P. Soille p. 483
14.1 Introduction p. 483
14.2 Preliminaries p. 484
14.3 Basic morphological operators p. 489
14.4 Advanced morphological operators p. 495
14.5 References p. 515
15 Probabilistic Modeling in Computer Vision J. Hornegger and D. Paulus and H. Niemann p. 517
15.1 Introduction p. 517
15.2 Why probabilistic models? p. 518
15.3 Object recognition as probabilistic modeling p. 519
15.4 Model densities p. 524
15.5 Practical issues p. 536
15.6 Summary, conclusions, and discussion p. 538
15.7 References p. 539
16 Fuzzy Image Processing H. Haussecker and H. R. Tizhoosh p. 541
16.1 Introduction p. 541
16.2 Fuzzy image understanding p. 548
16.3 Fuzzy image processing systems p. 553
16.4 Theoretical components of fuzzy image processing p. 556
16.5 Selected application examples p. 564
16.6 Conclusions p. 570
16.7 References p. 571
17 Neural Net Computing for Image Processing A. Meyer-Base p. 577
17.1 Introduction p. 577
17.2 Multilayer perceptron (MLP) p. 579
17.3 Self-organizing neural networks p. 585
17.4 Radial-basis neural networks (RBNN) p. 590
17.5 Transformation radial-basis networks (TRBNN) p. 593
17.6 Hopfield neural networks p. 596
17.7 Application examples of neural networks p. 601
17.8 Concluding remarks p. 604
17.9 References p. 605
III Application Gallery
A Application Gallery p. 609
A1 Object Recognition with Intelligent Cameras T. Wagner and P. Plankensteiner p. 610
A2 3-D Image Metrology of Wing Roots H. Beyer p. 612
A3 Quality Control in a Shipyard H.-G. Maas p. 614
A4 Topographical Maps of Microstructures Torsten Scheuermann and Georg Wiora and Matthias Graf p. 616
A5 Fast 3-D Full Body Scanning for Humans and Other Objects N. Stein and B. Minge p. 618
A6 Reverse Engineering Using Optical Range Sensors S. Karbacher and G. Hausler p. 620
A7 3-D Surface Reconstruction from Image Sequences R. Koch and M. Pollefeys and L. Von Gool p. 622
A8 Motion Tracking R. Frischholz p. 624
A9 Tracking "Fuzzy" Storms in Doppler Radar Images J.L. Barron and R.E. Mercer and D. Cheng and P. Joe p. 626
A10 3-D Model-Driven Person Detection Ch. Ridder and O. Munkelt and D. Hansel p. 628
A11 Knowledge-Based Image Retrieval Th. Hermes and O. Herzog p. 630
A12 Monitoring Living Biomass with in situ Microscopy P. Geissler and T. Scholz p. 632
A13 Analyzing Size Spectra of Oceanic Air Bubbles P. Geissler and B. Jahne p. 634
A14 Thermography to Measure Water Relations of Plant Leaves B. Kummerlen and S. Dauwe and D. Schmundt and U. Schurr p. 636
A15 Small-Scale Air-Sea Interaction with Thermography U. Schimpf and H. Haussecker and B. Jahne p. 638
A16 Optical Leaf Growth Analysis D. Schmundt and U. Schurr p. 640
A17 Analysis of Motility Assay Data D. uttenweiler and R. H. A. Fink p. 642
A18 Fluorescence Imaging of Air-Water Gas Exchange S. Eichkorn and T. Munsterer and U. Lode and B. Jahne p. 644
A19 Particle-Tracking Velocimetry D. Engelmann and M. Stohr and C. Garbe and F. Hering p. 646
A20 Analyzing Particle Movements at Soil Interfaces H. Spies and H. Groning and H. Haussecker p. 648
A21 3-D Velocity Fields from Flow Tomography Data H.-G. Maas p. 650
A22 Cloud Classification Analyzing Image Sequences M. Wenig and C. Leue p. 652
A23 No[subscript X] Emissions Retrieved from Satellite Images C. Leue and M. Wenig and U. Platt p. 654
A24 Multicolor Classification of Astronomical Objects C. Wolf and K. Meisenheimer and H.-J. Roeser p. 656
A25 Model-Based Fluorescence Imaging D. Uttenweiler and R. H. A. Fink p. 658
A26 Analyzing the 3-D Genome Topology H. Bornfleth and P. Edelmann and C. Cremer p. 660
A27 References p. 662
Index p. 667
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×
亲爱的云图用户,
光盘内的文件都可以直接点击浏览哦
无需下载,在线查阅资料!