简介
本书为海外优秀数学类教材系列丛书之一。《微积分》(第5版)(影印版)从Thomson Learning出版公司引进,本教材2003年全球发行约400 000册,在美国,占领了50%-60%的微积分教材市场,其用户包括耶鲁大学(Yale University)等名牌院校及众多一般院校600多所。本书语言朴实、流畅、可读性强,比较适合非英语国家的学生阅读。本书历经多年教学实践检验,内容翔实,叙述准确、对每个重要专题,均用语言地、代数地、数值地、图像地予以陈述。作者及其助手花费了三年时间,在各种媒体中寻找了最能反映应用微积分的实例,并把它们编入了教材。因此,本书例、习题贴近生活实际,能充分调动学生学习的兴趣。值的一提的是,本书较好地利用了科技。随书附赠两张CD-ROM,一张称为“TEC”,含有100多个模块及课外作业提示,如同一个无声的老师,用探索、发现式的方法逐步引导学生分析并解决问题。另一张称为技能构造器,包含有解释课本中例题的视频,等。本书上册内容包括:1.函数和模型;2.极限和变化率;3.微分法则;4.微分的应用;5.积分; 6.积分的应用;7.积分法;8.积分的进一步应用。9.微分方程;10.参数方程和极坐标。下册内容包括:11.无穷序列和级数;12. 向量和解析几何;13.向量函数;14.偏导数;15.多重积分;16.向量微积分;18.二阶微分方程;附录A:数、不等式和绝对值;B.直角坐标系和直线;C.二次方程的图形;D.三角;E.符号;F.定理证明;G.复数;H.奇数题答案;索引。本书适于国内高等院校工科各专业和广大非数学专业(含经管、文科专业)本、专科生作为双语教学的教材使用。
目录
Preface xiv
To the Student xxvi
A Preview of Calculus 2
1 Functions and Hodels 10
1.1 Four Ways to Represent a Function 11
1.2 Mathematical Models: A Catalog of Essential Functions 25
i.3 New Functions from Old Functions 38
1.4 Graphing Calculators and Computers 48
1.5 Exponential Functions 55
1.6 Inverse Functions and Logarithms 63
Review 77
Principles of Problem Solving 80
2 Limils and Derivatives 8G
2.1 The Tangent and Velocity Problems 87
2.2 The Limit of a Function 92
2.3 Calculating Limits Using the Limit Laws 104
2.4 The Precise Definition of a Limit 114
2.5 Continuity 124
2.6 Limits at Infinity; Horizontal Asymptotes 135
2.7 Tangents, Velocities, and Other Rates of Change 149
2.8 Derivatives 158
Writing Project o Early Methods for Finding Tangents 164
2.9 The Derivative as a Function 165
Review 176
Problems Plus 180
3 Lifferenliatiun Rules 182
3.1 Derivatives of Polynomials and Exponential Functions 183
3.2 The Product and Quotient Rules 192
3.3 Rates of Change in the Natural and Social Sciences 199
3.4 Derivatives of Trigonometric Functions 211
3.5 The Chain Rule 217
3.6 Implicit Differentiation 227
3.7 Higher Derivatives 236
Applied Project o Where Should a Pilot Start Descent? 243
Applied Project o Building a Better Roller Coaster 243
3.8 Derivatives of Logarithmic Functions 244
3.9 Hyperbolic Functions 250
3.10 Related Rates 256
3.11 Linear Approximations and Differentials 262
Laboratory Project o Taylor Polynomials 269
Review 270
Problems Plus 274
4 Applications of gifferenliulion 278
4.1 Maximum and Minimum Values 279
Applied Project o The Calculus of Rainbows 288
4.2 The Mean Value Theorem 290
4.3 How Derivatives Affect the Shape of a Graph 296
4.4 Indeterminate Forms and LHospitals Rule 307
Writing Project o The Origins of LHospitars Rule 315
4.5 Summary of Curve Sketching 316
4.6 Graphing with Calculus and Calculators 324
4.7 Optimization Problems 331
Applied Project o The Shape of a Can 341
4.8 Applications to Business and Economics 342
4.9 Newtons Method 347
4.10 Antiderivatives 353
Review 361
Problems Plus 365
5 Inteorals 360
5.1 Areas and Distances 369
5.2 The Definite Integral 380
Discovery Project o Area Functions 393
5.3 The Fundamental Theorem of Calculus 394
5.4 Indefinite Integrals and the Net Change Theorem 405
Writing Project o Newton, keibniz, and the Invention of Calculus 413
5.5 The Substitution Rule 414
5.6 The Logarithm Defined as an Integral 422
Review 430
Problems Plus 434
6 Applicotions of Inteoration 436
6.1 Areas between Curves 437
6.2 Volumes 444
6.3 Volumes by Cylindrical Shells 455
6.4 Work 460
6.5 Average Value of a Function 464
Applied Project o Where to Sit at the Movies 468
Review 468
Problems Plus 470
7 Techniques of Integration 474
7.1 Integration by Parts 475
7.2 Trigonometric Integrals 482
7.3 Trigonometric Substitution 489
7.4 Integration of Rational Functions by Partial Fractions 496
7.5 Strategy for Integration 505
7.6 Integration Using Tables and Computer Algebra Systems 511
Discovery Project o Patterns in Integrals 517
7.7 Approximate Integration 518
7.8 Improper Integrals 530
Review 540
Problems Plus 543
8 Further Applications of Inteoralion 546
8.1 Arc Length 547
Discovery Project o Arc Length Contest 554
8.2 Area of a Surface of Revolution 554
Discovery Project o Rotating on a Slant 560
8.3 Applications to Physics and Engineering 561
8.4 Applications to Economics and Biology 571
8.5 Probability 575
Review 582
Problems Plus 584
9 Diffeiential Equations 586
9.1 Modeling with Differential Equations 587
9.2 Direction Fields and Eulers Method 592
9.3 Separable Equations 601
Applied Project How Fast Does a Tank Drain? 609
Applied Project Which Is Faster, Going Up or Coming Down? 610
9.4 Exponential Growth and Decay 611
Applied Project Calculus and Baseball 622
……
10 Parametric Equations and Polar Coordinates
11 Infinite Sequences and Series
12 Vectors and the Geometru of Space
13 Vector Functions
14 Partial Derivatives
15 Multiple Integrals
16 Vector Calculus
17 Second-Order Offerential Equations
Appendixes
Index
To the Student xxvi
A Preview of Calculus 2
1 Functions and Hodels 10
1.1 Four Ways to Represent a Function 11
1.2 Mathematical Models: A Catalog of Essential Functions 25
i.3 New Functions from Old Functions 38
1.4 Graphing Calculators and Computers 48
1.5 Exponential Functions 55
1.6 Inverse Functions and Logarithms 63
Review 77
Principles of Problem Solving 80
2 Limils and Derivatives 8G
2.1 The Tangent and Velocity Problems 87
2.2 The Limit of a Function 92
2.3 Calculating Limits Using the Limit Laws 104
2.4 The Precise Definition of a Limit 114
2.5 Continuity 124
2.6 Limits at Infinity; Horizontal Asymptotes 135
2.7 Tangents, Velocities, and Other Rates of Change 149
2.8 Derivatives 158
Writing Project o Early Methods for Finding Tangents 164
2.9 The Derivative as a Function 165
Review 176
Problems Plus 180
3 Lifferenliatiun Rules 182
3.1 Derivatives of Polynomials and Exponential Functions 183
3.2 The Product and Quotient Rules 192
3.3 Rates of Change in the Natural and Social Sciences 199
3.4 Derivatives of Trigonometric Functions 211
3.5 The Chain Rule 217
3.6 Implicit Differentiation 227
3.7 Higher Derivatives 236
Applied Project o Where Should a Pilot Start Descent? 243
Applied Project o Building a Better Roller Coaster 243
3.8 Derivatives of Logarithmic Functions 244
3.9 Hyperbolic Functions 250
3.10 Related Rates 256
3.11 Linear Approximations and Differentials 262
Laboratory Project o Taylor Polynomials 269
Review 270
Problems Plus 274
4 Applications of gifferenliulion 278
4.1 Maximum and Minimum Values 279
Applied Project o The Calculus of Rainbows 288
4.2 The Mean Value Theorem 290
4.3 How Derivatives Affect the Shape of a Graph 296
4.4 Indeterminate Forms and LHospitals Rule 307
Writing Project o The Origins of LHospitars Rule 315
4.5 Summary of Curve Sketching 316
4.6 Graphing with Calculus and Calculators 324
4.7 Optimization Problems 331
Applied Project o The Shape of a Can 341
4.8 Applications to Business and Economics 342
4.9 Newtons Method 347
4.10 Antiderivatives 353
Review 361
Problems Plus 365
5 Inteorals 360
5.1 Areas and Distances 369
5.2 The Definite Integral 380
Discovery Project o Area Functions 393
5.3 The Fundamental Theorem of Calculus 394
5.4 Indefinite Integrals and the Net Change Theorem 405
Writing Project o Newton, keibniz, and the Invention of Calculus 413
5.5 The Substitution Rule 414
5.6 The Logarithm Defined as an Integral 422
Review 430
Problems Plus 434
6 Applicotions of Inteoration 436
6.1 Areas between Curves 437
6.2 Volumes 444
6.3 Volumes by Cylindrical Shells 455
6.4 Work 460
6.5 Average Value of a Function 464
Applied Project o Where to Sit at the Movies 468
Review 468
Problems Plus 470
7 Techniques of Integration 474
7.1 Integration by Parts 475
7.2 Trigonometric Integrals 482
7.3 Trigonometric Substitution 489
7.4 Integration of Rational Functions by Partial Fractions 496
7.5 Strategy for Integration 505
7.6 Integration Using Tables and Computer Algebra Systems 511
Discovery Project o Patterns in Integrals 517
7.7 Approximate Integration 518
7.8 Improper Integrals 530
Review 540
Problems Plus 543
8 Further Applications of Inteoralion 546
8.1 Arc Length 547
Discovery Project o Arc Length Contest 554
8.2 Area of a Surface of Revolution 554
Discovery Project o Rotating on a Slant 560
8.3 Applications to Physics and Engineering 561
8.4 Applications to Economics and Biology 571
8.5 Probability 575
Review 582
Problems Plus 584
9 Diffeiential Equations 586
9.1 Modeling with Differential Equations 587
9.2 Direction Fields and Eulers Method 592
9.3 Separable Equations 601
Applied Project How Fast Does a Tank Drain? 609
Applied Project Which Is Faster, Going Up or Coming Down? 610
9.4 Exponential Growth and Decay 611
Applied Project Calculus and Baseball 622
……
10 Parametric Equations and Polar Coordinates
11 Infinite Sequences and Series
12 Vectors and the Geometru of Space
13 Vector Functions
14 Partial Derivatives
15 Multiple Integrals
16 Vector Calculus
17 Second-Order Offerential Equations
Appendixes
Index
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×
亲爱的云图用户,
光盘内的文件都可以直接点击浏览哦
无需下载,在线查阅资料!