Dynamic behavior of concrete and seismic engineering /

副标题:无

作   者:edited by Jacky Mazars, Alain Millard.

分类号:

ISBN:9781848210714

微信扫一扫,移动浏览光盘

简介

While the static behavior of concrete has been the subject of numerous works, the same cannot be said for the dynamic behavior. This book sets out to remedy this situation: it begins by presenting the most frequently used experimental techniques in the study of the dynamic behavior of concrete, then continues by examining seismicity and seismic behavior, soil behavior, models of concrete structures subject to seismic activity, seismic calculation methods of structures, and paraseismic engineering.

目录

Table of Contents 7
Preface 13
Chapter 1. Dynamic Behavior of Concrete: Experimental Aspects 17
1.1. Introduction 17
1.1.1. Meaning of the word \u201cdynamic\u201d 17
1.1.2. Reminders about dynamic experimentation 19
1.1.3. Identifying the behavior of concrete under fast dynamic loadings 24
1.2. Tests in which the transient rate has little influence 26
1.2.1. Tests involving deviatoric behavior 27
1.2.2. Tests with prevailing spherical behavior 33
1.3. Tests with transient phase conditioned interpretations 36
1.3.1. Tests involving mainly traction behavior 36
1.3.2. Tests implementing compression behavior 41
1.4. Other tests 45
1.4.1. Tests adaptable to an energetic approach 45
1.4.2. Validation tests on structures requiring an inverse analysis 46
1.5. Synthesis of the experimental data on concrete and associated materials 49
1.5.1. Data on cement paste mortar and concrete 49
1.5.2. Data available for reinforced concrete 56
1.5.3. Data about fiber-reinforced concretes 58
1.6. Conclusion 62
1.7. Bibliography 63
Chapter 2. Dynamic Behavior of Concrete: Constitutive Models 71
2.1. Dynamics of concrete structures 71
2.1.1. Macroscopic phenomena 71
2.1.2. Perforation 73
2.1.3. Ejection of fragments 74
2.1.4. Loading range 75
2.1.5. Loading path 76
2.2. Fast dynamics applied to concrete 78
2.2.1. Impacts and waves 78
2.2.2. Impact and shock polar curve 82
2.2.3. Shock between two solids 83
2.3. Scabbing 84
2.4. Effect of a shock wave on the structure of materials 85
2.5. Modeling types 86
2.5.1. Behavior description theoretical frames 86
2.5.2. Integrating sensitivity to the strain rate 87
2.5.3. Elasto-plasticity and criteria 88
2.5.4. Damage 90
2.5.5. Notion of a state law 90
2.5.6. Location limiter and time sensitivity 91
2.6. Models 92
2.6.1. Elasticity-based model 92
2.6.2. Models based on the theory of plasticity 93
2.6.3. Models based on damage mechanics 97
2.6.4. Model coupling damage and plasticity 98
2.6.5. Model coupling damage and mechanics of porous media 99
2.6.6. Model deriving from a hydrodynamic approach 100
2.6.7. Endochronic models 103
2.6.8. Discrete element method 104
2.7. Conclusion 106
2.7.1. Main features of the models 106
2.7.2. Contribution of distinct elements 107
2.8. Bibliography 108
Chapter 3. Seismic Ground Motion 111
3.1. Introduction 111
3.2. Measuring seismic motions 112
3.2.1. Differences between seismological and accelerometer networks 112
3.2.2. Accelerometer networks 113
3.2.3. Accelerometer data banks 114
3.3. Quantitative characterization of seismic movements 114
3.3.1. Time maximum values 114
3.3.2. Spectral characterizations 115
3.3.3. Features of hybrid characterizations 122
3.3.4. Caveats regarding differential motions 123
3.4. Factors affecting seismic motions 124
3.4.1. Spectral signature of the seismic source 125
3.4.2. Effects of propagation in the Earth\u2019s crust 127
3.4.3. Site effects 129
3.5. Conclusions 136
3.6. Bibliography 137
Chapter 4. Soil Behavior: Dynamic Soil-Structure Interactions 141
Introduction 141
4.1. Behavior of soils under seismic loading 142
4.1.1. Influence of the nature of soils on seismic movements 142
4.1.2. Experimental description of soil behavior 144
4.2. Modeling soil behavior 147
4.2.1. An experimental description of elastic soil behavior (纬<=纬s) 150
4.2.2. Linear visco-elastic models for medium strain domains where 纬s<=纬<=纬v 150
4.2.3. High strain domain non-linear models where 纬=>纬v 157
4.3. Linear soil-structure interactions 159
4.3.1. Illustration of the soil-structure interaction effect 159
4.3.2. Expression of a soil-structure problem 164
4.3.3. Superposition theorem 167
4.3.4. Practical modeling of the soil-structure interaction 170
4.4. Non-linear soil-structure interactions 174
4.4.1. Geometric non-linearities and uplift of the foundations 174
4.4.2. Non-linearities of behavior 174
4.4.3. Modeling the non-linear soil-structure interaction 175
4.5. Bibliography 177
Chapter 5. Experimental Methods in Earthquake Engineering 181
Introduction 181
5.1. The pseudo-dynamic method 183
5.1.1. Introduction 183
5.1.2. History of the PSD method 184
5.1.3. The ELSA laboratory 184
5.1.4. Comparison with shaking tables 186
5.2. The conventional pseudo-dynamic method 186
5.2.1. Algorithms 186
5.2.2. Implementation at ELSA 188
5.2.3. The sub-structuration method 190
5.2.4. Illustration 193
5.3. Continuous pseudo-dynamic method 194
5.3.1. Continuous method principle 194
5.3.2. Implementation at ELSA 196
5.3.3. Sub-structuration for the continuous method 198
5.4. Final comments 199
5.5. Shaking table tests 200
5.5.1. Introduction 200
5.5.2. Characteristics and performance of shaking tables 203
5.6. Laws of similarity 209
5.7. Instrumentation 210
5.8. Loading 211
5.9. Conclusion 212
5.10. Bibliography 213
Chapter 6. Experiments on Large Structures 217
Introduction 217
6.1. Instrumentation 218
6.2. Dynamic loads 221
6.3. Data processing 222
6.4. Application to buildings 224
6.4.1. The slanting tower at the Montreal Olympic Stadium 225
6.4.2. Reinforced concrete building 226
6.5. Bridge application 229
6.5.1. Pedestrian footbridge 229
6.5.2. A mixed cable-stayed/suspension bridge 231
6.6. Application to large dams 236
6.6.1. Assessment of a response spectrum on the crown 236
6.6.2. Study of foundation-ice-reservoir-dam interactions 238
6.6.3. Study of the effect of the water level inside the reservoirs 244
6.7. Conclusion 246
6.8. Acknowledgements 246
6.9. Bibliography 246
Chapter 7. Models for Simulating the Seismic Response of Concrete Structures 249
7.1. Introduction 249
7.2. Different discretization families 250
7.2.1. Global modeling 250
7.2.2. Semi-global modeling 251
7.2.3. 2D and 3D fine models 255
7.3. Behavior laws for concrete 256
7.3.1. Semi-empirical mixed models 256
7.3.2. Damage model 257
7.3.3. Plasticity model for concrete 259
7.3.4. Cyclic models for steel 263
7.3.5. Taking construction layouts and second-order phenomena into account 264
7.4. A few examples with their validation through experiments 266
7.4.1. Application of the semi-global method to a four-storey structure 266
7.4.2. Semi-global and local models applied to concrete walls 269
7.5. Conclusions 285
7.6. Bibliography 286
Chapter 8. Seismic Analysis of Structures: Improvements Due to Probabilistic Concepts 289
8.1. Introduction 289
8.2. The modal method 290
8.2.1. Data about the seismic source 290
8.2.2. Calculation of structural responses using the modal method 293
8.3. Criticism of the modal method 295
8.4. A few reminders about random processes 296
8.4.1. Definition and characterization of a time random process 296
8.4.2. Second order characterization 296
8.4.3. Response of a linear system to random stress 298
8.4.4. Using stochastic equations 301
8.4.5. Extrema statistics in a stationary process 302
8.5. Improvements to the modal method 308
8.5.1. Complete quadratic combination 310
8.5.2. Peak factor effect 311
8.6. Direct calculation of the floor spectra 313
8.6.1. Representation of non-stationary processes 313
8.6.2. Adjusting a separable process from the ORS data 314
8.6.3. Determination of the floor spectra 315
8.7. Creation of synthetic signals and direct numerical integration 317
8.8. Seismic analysis of non-linear behavior structures 320
8.8.1. Introduction 320
8.8.2. Main non-linearities of seismically-loaded structures 320
8.8.3. Notion of \u201cinelastic spectra\u201d 321
8.8.4. Conventional method of stochastic linearization 326
8.8.5. Random parameter stochastic linearization 332
8.9. Conclusion 339
8.10. Bibliography 339
Chapter 9. Engineering Know-How: Lessons from Earthquakes and Rules for Seismic Design 343
9.1. Introduction 343
9.2. Lessons from earthquakes 343
9.2.1. Pathologies linked to overall behavior 344
9.2.2. Problems linked to local under-design 346
9.2.3. Problems linked to construction layout 350
9.3. The aims of anti-seismic protection standards 352
9.3.1. Standardization of anti-seismic design 352
9.3.2. Main objectives of anti-seismic protection 353
9.3.3. Verification method 354
9.3.4. Capacity-design method 357
9.4. General design 360
9.4.1. Design principles 360
9.4.2. Regularity conditions 361
9.4.3. Calculation of seismic action effects 362
9.5. Behavior coefficients 365
9.5.1. Using behavior coefficients 365
9.5.2. Structure behavior and behavior coefficients 367
9.5.3. Local ductility and behavior coefficients 368
9.5.4. Ductility classes and behavior coefficients 368
9.6. Designing and dimensioning reinforced concrete structure elements 369
9.6.1. Regulations specific to reinforced concrete in seismic areas 369
9.6.2. Main types of reinforced concrete bracing 370
9.6.3. Main frames 372
9.6.4. Reinforced concrete bracing walls 375
9.6.5. Detail designing 380
9.7. Conclusions 382
9.8. Bibliography 382
List of Authors 385
Index 389

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

Dynamic behavior of concrete and seismic engineering /
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon