简介
Summary:
Publisher Summary 1
Kraus, James R. Welty (both Oregon State U.) and Abdul Aziz (Gonzaga U., Washington) present a textbook for a rather intense one-semester course at the junior year of an engineering curriculum, which in most cases will be the only course on thermal and fluid engineering the students take. The book incorporates thermodynamics, fluid mechanics, and heat transfer to show how to use keep track of the forms of energy necessary to solve detailed problems involving closed and open thermodynamic systems. Among the topics are the second law of thermodynamics, fluid statics, steady-state conduction, and free or natural conduction. Annotation 漏2011 Book News, Inc., Portland, OR (booknews.com)
目录
Table Of Contents:
Preface xix
1 The Thermal/Fluid Sciences: Introductory Concepts 1(14)
1.1 Introduction 1(2)
1.2 Thermodynamics 3(1)
1.3 Fluid Mechanics 4(1)
1.4 Heat Transfer 5(1)
1.5 Engineered Systems and Products 5(4)
1.5.1 Case I: A Commercial Airliner 5(2)
1.5.2 Case II: A Chemical Plant Distillation Column 7(1)
1.5.3 Case III: The Thermal Ink Jet Printer 8(1)
1.6 Historical Development 9(2)
1.6.1 Thermodynamics 9(1)
1.6.2 Fluid Mechanics 9(1)
1.6.3 Heat Transfer 10(1)
1.7 The Thermal/Fluid Sciences and the Environment 11(3)
1.7.1 The Ozone Layer 11(1)
1.7.2 Smog 12(1)
1.7.3 Acid Rain 13(1)
1.8 Summary 14(1)
2 Thermodynamics: Preliminary Concepts and Definitions 15(22)
2.1 The Study of Thermodynamics 15(1)
2.2 Some Definitions 16(5)
2.2.1 Systems 16(1)
2.2.2 Fluids 17(1)
2.2.3 Substances 17(1)
2.2.4 State and Properties 18(1)
2.2.5 Processes 18(1)
2.2.6 Thermodynamic Equilibrium 19(1)
2.2.6.1 Requirements for Thermodynamic Equilibrium 19(1)
2.2.6.2 Quasi-Equilibrium or Quasi-Static Processes 20(1)
2.2.7 Statistical and Classical Thermodynamics 20(1)
2.3 Dimensions and Units 21(5)
2.3.1 Introduction 21(1)
2.3.2 The SI (Systeme Internationale D'unites) System 21(2)
2.3.3 The English Engineering System 23(3)
2.3.3.1 The British Gravitational System 25(1)
2.3.4 SI Unit Prefixes 26(1)
2.4 Density and Related Properties 26(2)
2.5 Pressure 28(1)
2.5.1 Gage, Absolute, and Vacuum Pressure 28(1)
2.5.2 Measuring Pressure 28(1)
2.6 Temperature and the Zeroth Law of Thermodynamics 29(3)
2.7 Problem-Solving Methodology 32(1)
2.8 Summary 33(1)
2.9 Problems 33(4)
3 Energy and the First Law of Thermodynamics 37(36)
3.1 Introduction 37(1)
3.2 Kinetic, Potential, and Internal Energy 38(4)
3.2.1 Kinetic Energy 38(1)
3.2.2 Potential Energy 39(1)
3.2.3 Internal Energy 40(1)
3.2.4 The Total Energy 40(2)
3.3 Work 42(3)
3.3.1 Power 45(1)
3.4 Heat 45(1)
3.5 The First Law of Thermodynamics 46(1)
3.6 The Energy Balance for Closed Systems 47(8)
3.6.1 Processes 47(3)
3.6.2 Other Forms of Work 50(3)
3.6.2.1 Shaft or Paddle Wheel Work 50(1)
3.6.2.2 Electrical Work 50(1)
3.6.2.3 Spring Work 51(1)
3.6.2.4 Two Additional Examples 52(1)
3.6.3 Cycles 53(2)
3.7 The Ideal Gas Model 55(3)
3.8 Ideal Gas Enthalpy and Specific Heats 58(4)
3.9 Processes of an Ideal Gas 62(4)
3.9.1 Introduction 62(1)
3.9.2 The Constant Volume Process 63(1)
3.9.3 The Constant Pressure Process 63(1)
3.9.4 The Isothermal Process 64(2)
3.10 Summary 66(2)
3.11 Problems 68(5)
4 Properties of Pure, Simple Compressible Substances 73(36)
4.1 The State Postulate 73(1)
4.2 P-v-T Relationships 74(4)
4.2.1 Introduction 74(1)
4.2.2 The P-v-T Surface 74(1)
4.2.3 Single-Phase Regions 75(1)
4.2.4 Two-Phase Regions 76(1)
4.2.5 Three-Phase Regions 76(1)
4.2.6 The P-T Surface 76(1)
4.2.7 The P-v Surface 77(1)
4.2.8 Some Hints For Phase Determination 78(1)
4.3 Thermodynamic Property Data 78(12)
4.3.1 Table Arrangement 78(1)
4.3.2 The Saturation Tables 78(6)
4.3.3 The Superheated Vapor Tables 84(2)
4.3.4 The Compressed or Subcooled Liquid Region 86(4)
4.4 The T-s and h-s Diagrams 90(1)
4.5 Real Gas Behavior 91(3)
4.5.1 Introduction 91(1)
4.5.2 The Compressibility Factor 92(1)
4.5.3 The Principle of Corresponding States 93(1)
4.6 Equations of State 94(4)
4.6.1 The Van der Waals Equation 95(1)
4.6.2 The Redlich-Kwong Equation of State 95(3)
4.7 The Polytropic Process for an Ideal Gas 98(4)
4.7.1 P-V-T Relationships 98(1)
4.7.2 Work 99(1)
4.7.3 Internal Energy and Enthalpy 99(1)
4.7.4 Heat Transfer 99(3)
4.8 Summary 102(1)
4.9 Problems 103(6)
5 Control Volume Mass and Energy Analysis 109(40)
5.1 Introduction 109(1)
5.2 The Control Volume 110(1)
5.3 Conservation of Mass 110(4)
5.3.1 The Mass Balance 110(1)
5.3.2 The Volumetric Flow Rate 111(3)
5.4 Conservation of Energy for a Control Volume 114(4)
5.4.1 Introduction 114(1)
5.4.2 The Energy Rate Balance 115(1)
5.4.3 Flow Work 116(1)
5.4.4 The Control Volume Energy Equation 117(1)
5.5 Specific Heats of Incompressible Substances 118(1)
5.6 Applications of Control Volume Energy Analysis 119(18)
5.6.1 Introduction 119(1)
5.6.2 The Nozzle and the Diffuser 119(3)
5.6.3 The Turbine 122(2)
5.6.4 The Compressor 124(2)
5.6.5 Pumps 126(2)
5.6.6 The Mixing Chamber 128(2)
5.6.7 Heat Exchangers 130(4)
5.6.8 The Throttling Valve 134(3)
5.7 Synthesis or Analysis? 137(1)
5.8 The First Law Heat Balance 138(1)
5.9 Design Example 1 139(1)
5.10 Summary 140(1)
5.11 Problems 141(8)
6 The Second Law of Thermodynamics 149(34)
6.1 Introduction 149(1)
6.2 The Kelvin-Planck Statement and Heat Engines 150(4)
6.3 The Clausius Statement: Refrigerators and Heat Pumps 154(4)
6.4 The Equivalence of the Kelvin-Planck and Clausius Statements 158(1)
6.5 Reversible and Irreversible Processes 159(1)
6.6 The Carnot Cycle 160(6)
6.7 The Carnot Cycle with External Irreversibilities 166(3)
6.8 The Absolute Temperature Scales 169(1)
6.9 Summary 169(2)
6.10 Problems 171(12)
7 Entropy 183(36)
7.1 Introduction 183(1)
7.2 The Classical Definition of Entropy 184(1)
7.3 The Clausius Inequality 185(2)
7.4 The Temperature-Entropy Diagram 187(4)
7.5 The Gibbs Property Relations 191(1)
7.6 Entropy Change for Solids, Liquids, and Ideal Gases 192(3)
7.6.1 Entropy Change for Solids and Liquids 193(1)
7.6.2 Entropy Change for an Ideal Gas 194(1)
7.7 The Isentropic Process for an Ideal Gas 195(3)
7.8 Isentropic Efficiencies of Steady Flow Devices 198(7)
7.9 The Entropy Balance Equation 205(5)
7.9.1 The Entropy Balance for Closed Systems 205(2)
7.9.2 The Entropy Rate Balance for an Open System (Control Volume) 207(3)
7.10 Summary 210(1)
7.11 Problems 211(8)
8 Gas Power Systems 219(42)
8.1 Introduction 219(1)
8.2 The Internal Combustion Engine 220(2)
8.3 The Air Standard Otto Cycle 222(8)
8.3.1 Performance 222(7)
8.3.2 The Compression Ratio and Its Effect on Performance 229(1)
8.4 Design Example 2 230(2)
8.5 The Air Standard Diesel Cycle 232(5)
8.6 The Gas Turbine 237(9)
8.6.1 Introduction 237(1)
8.6.2 The Ideal Gas Turbine or Brayton Cycle 238(5)
8.6.3 The Ideal Brayton Cycle with Regeneration 243(3)
8.7 The Jet Engine 246(5)
8.8 Summary 251(3)
8.9 Problems 254(7)
9 Vapor Power and Refrigeration Cycles 261(42)
9.1 Introduction 261(1)
9.2 The Steam Power Plant 261(2)
9.3 The Ideal Rankine Cycle 263(6)
9.3.1 The Ideal Rankine Cycle 263(5)
9.3.2 Increasing the Efficiency of the Ideal Rankine Cycle 268(1)
9.4 The Ideal Rankine Cycle with Superheat 269(3)
9.5 The Effect of Irreversibilities 272(3)
9.6 The Rankine Cycle with Superheat and Reheat 275(5)
9.7 Design Example 3 280(2)
9.8 The Ideal Rankine Cycle with Regeneration 282(4)
9.9 The Ideal Refrigeration Cycle 286(2)
9.9.1 Physical Description 286(2)
9.9.2 Refrigerants 288(1)
9.10 The Ideal Vapor Compression Refrigeration Cycle 288(4)
9.11 Departures from the Ideal Refrigeration Cycle 292(1)
9.12 Summary 293(3)
9.13 Problems 296(7)
10 Mixtures of Gases, Vapors, and Combustion Products 303(26)
10.1 Introduction 303(1)
10.2 Mixtures of Ideal Gases 303(5)
10.2.1 Development 303(1)
10.2.2 Dalton's Law of Partial Pressures 304(1)
10.2.3 Gravimetric and Volumetric Analyses 305(1)
10.2.4 The Apparent Molecular Weight and Gas Constant 305(1)
10.2.5 Properties of Ideal Gas Mixtures 306(2)
10.3 Psychrometrics 308(6)
10.3.1 Introduction 308(1)
10.3.2 Specific and Relative Humidity 309(2)
10.3.3 Other Properties 311(1)
10.3.4 The Wet Bulb Temperature 311(3)
10.4 The Psychrometric Chart 314(2)
10.5 The Products of Combustion 316(6)
10.5.1 Fuels 316(1)
10.5.2 The Combustion Process 317(1)
10.5.3 Combustion Air 318(1)
10.5.4 The Air-Fuel Ratio 319(3)
10.6 Summary 322(1)
10.7 Problems 323(6)
11 Introduction to Fluid Mechanics 329(32)
11.1 The Definition of a Fluid 329(1)
11.2 Fluid Properties and Flow Properties 330(1)
11.3 The Variation of Properties in a Fluid 331(3)
11.4 The Continuum Concept 334(1)
11.5 Laminar and Turbulent Flow 335(1)
11.6 Fluid Stress Conventions and Concepts 336(4)
11.7 Viscosity, a Fluid Property 340(5)
11.8 Design Example 4 345(1)
11.9 Other Fluid Properties 346(5)
11.9.1 Specific Gravity and Specific Weight 346(1)
11.9.2 Compressibility 346(1)
11.9.3 The Speed of Sound 347(1)
11.9.4 Surface Tension and Capillary Action 348(3)
11.10 Summary 351(1)
11.11 Problems 352(9)
12 Fluid Statics 361(46)
12.1 Introduction 361(1)
12.2 Pressure Variation in a Static Field 361(2)
12.3 Hydrostatic Pressure 363(6)
12.4 Hydrostatic Forces on Plane Surfaces 369(5)
12.5 Design Example 5 374(3)
12.6 Hydrostatic Forces on Curved Surfaces 377(1)
12.7 Buoyancy 378(2)
12.8 Stability 380(3)
12.9 Uniform Rectilinear Acceleration 383(3)
12.10 Summary 386(1)
12.11 Problems 386(21)
13 Control Volume Analysis-Mass and Energy Conservation 407(34)
13.1 Introduction 407(1)
13.2 Fundamental Laws 407(1)
13.3 Conservation of Mass 408(1)
13.4 Mass Conservation Applications 408(6)
13.5 The First Law of Thermodynamics for a Control Volume 414(1)
13.6 Applications of the Control Volume Expression for the First Law 415(4)
13.7 The Bernoulli Equation 419(4)
13.8 Design Example 6 423(3)
13.9 Summary 426(1)
13.10 Problems 426(15)
14 Newton's Second Law of Motion 441(36)
14.1 Introduction 441(1)
14.2 Linear Momentum 441(2)
14.3 Applications of the Control Volume Expression 443(9)
14.4 Design Example 7 452(2)
14.5 The Control Volume Relation for the Moment of Momentum 454(2)
14.6 Applications of the Moment of Momentum Relationship 456(4)
14.7 Summary 460(1)
14.8 Problems 460(17)
15 Dimensional Analysis and Similarity 477(26)
15.1 Introduction 477(1)
15.2 Fundamental Dimensions 477(1)
15.3 The Buckingham Pi Theorem 478(5)
15.4 Reduction of Differential Equations to a Dimensionless Form 483(2)
15.5 Dimensional Analysis of Rotating Machines 485(3)
15.6 Similarity 488(4)
15.7 Summary 492(1)
15.8 Problems 492(11)
16 Viscous Flow 503(20)
16.1 Introduction 503(1)
16.2 Reynolds' Experiment 503(2)
16.3 Fluid Drag 505(5)
16.4 Design Example 8 510(2)
16.5 Boundary Layer Flow over a Flat Plate 512(4)
16.6 Summary 516(1)
16.7 Problems 517(6)
17 Flow in Pipes and Pipe Networks 523(40)
17.1 Introduction 523(1)
17.2 Frictional Loss in Pipes 524(1)
17.3 Dimensional Analysis of Pipe Flow 525(2)
17.4 Fully Developed Flow 527(1)
17.5 Friction Factors for Fully Developed Flow 528(2)
17.5.1 Laminar Flow 528(1)
17.5.2 Turbulent Flow 529(1)
17.6 Friction Factor and Head Loss Determination for Pipe Flow 530(11)
17.6.1 Pipe Friction Factor 530(1)
17.6.2 Head Loss Due to Fittings and Valves 530(4)
17.6.3 Noncircular Flow Passages 534(1)
17.6.4 Single-Path Pipe Systems 534(7)
17.7 Design Example 9 541(3)
17.8 Design Example 10 544(2)
17.9 Design Example 11 546(4)
17.10 Multiple-Path Pipe Systems 550(4)
17.11 Summary 554(1)
17.12 Problems 554(9)
18 Fluid Machinery 563(28)
18.1 Introduction 563(1)
18.2 The Centrifugal Pump 564(7)
18.2.1 Introduction 564(2)
18.2.2 Theoretical Considerations 566(5)
18.3 The Net Positive Suction Head 571(3)
18.4 Combining Pump and System Performance 574(2)
18.5 Scaling Laws for Pumps and Fans 576(4)
18.6 Axial and Mixed Flow Pumps 580(1)
18.7 Turbines 581(1)
18.8 Summary 581(1)
18.9 Problems 582(9)
19 Introduction to Heat Transfer 591(18)
19.1 Introduction 591(1)
19.2 Conduction 591(2)
19.3 Thermal Conductivity 593(3)
19.4 Convection 596(1)
19.5 Radiation 596(1)
19.6 Thermal Resistance 597(1)
19.7 Combined Mechanisms of Heat Transfer 598(3)
19.8 The Overall Heat Transfer Coefficient 601(2)
19.9 Summary 603(1)
19.10 Problems 604(5)
20 Steady-State Conduction 609(58)
20.1 Introduction 609(1)
20.2 The General Equation of Heat Conduction 610(3)
20.3 Conduction in Plane Walls 613(13)
20.3.1 The Single-Material Layer 613(5)
20.3.2 The Composite Plane Wall 618(4)
20.3.3 Contact Resistance 622(4)
20.4 Radial Heat Flow 626(10)
20.4.1 Cylindrical Coordinates 626(6)
20.4.1.1 The Hollow Cylinder 626(2)
20.4.1.2 The Composite Hollow Cylinder 628(3)
20.4.1.3 The Critical Radius of Insulation 631(1)
20.4.2 Spherical Coordinates 632(4)
20.4.2.1 The Hollow Sphere 633(1)
20.4.2.2 The Composite Hollow Sphere 634(2)
20.5 Simple Shapes with Heat Generation 636(6)
20.5.1 The Plane Wall 636(3)
20.5.2 The Cylinder 639(1)
20.5.3 The Sphere 640(2)
20.6 Extended Surfaces 642(9)
20.6.1 Introduction 642(1)
20.6.2 The Longitudinal Fin of Uniform Thickness 642(3)
20.6.2.1 Constant Base Temperature with Tip Heat Loss 644(1)
20.6.2.2 Constant Base Temperature with Insulated Tip 645(1)
20.6.3 Fin Performance Criteria 645(2)
20.6.4 The Cylindrical Spine or Pin Fin 647(2)
20.6.5 Annular or Radial Fin of Uniform Thickness 649(2)
20.7 Two-Dimensional Conduction 651(5)
20.7.1 Introduction 651(1)
20.7.2 Solution Methods 652(1)
20.7.3 The Conduction Shape Factor Method 652(4)
20.8 Summary 656(1)
20.9 Problems 657(10)
21 Unsteady-State Conduction 667(40)
21.1 Introduction 667(1)
21.2 The Lumped Capacitance Model 668(5)
21.2.1 Convective Cooling 668(1)
21.2.2 The Validity Criterion 669(2)
21.2.3 The Effect of Internal Heat Generation 671(2)
21.3 The Semi-Infinite Solid 673(4)
21.3.1 Constant Surface Temperature 674(1)
21.3.2 Constant Surface Heat Flux 675(1)
21.3.3 Surface Convection 675(2)
21.4 Design Example 12 677(1)
21.5 Finite-Sized Solids 678(21)
21.5.1 The Long Plane Wall 678(6)
21.5.2 One-Term Approximate Solutions 684(2)
21.5.3 The Long Solid Cylinder 686(5)
21.5.4 One-Term Approximate Solutions 691(2)
21.5.5 The Solid Sphere 693(2)
21.5.6 One-Term Approximate Solutions 695(4)
21.6 Summary 699(2)
21.7 Problems 701(6)
22 Forced Convection-Internal Flow 707(38)
22.1 Introduction 707(1)
22.2 Temperature Distributions with Internal Forced Convection 708(6)
22.2.1 The Constant Wall Heat Flux Case 708(3)
22.2.2 The Constant Wall Temperature Case 711(3)
22.3 Convective Heat Transfer Coefficients 714(4)
22.3.1 Case 1 Laminar Flow 717(1)
22.3.2 Case 2 Transition Flow 718(1)
22.3.3 Case 3 Turbulent Flow 718(1)
22.4 Applications of Internal Flow Forced Convection Correlations 718(8)
22.5 Design Example 13 726(4)
22.6 Design Example 14 730(5)
22.7 Summary 735(1)
22.8 Problems 736(9)
23 Forced Convection-External Flow 745(28)
23.1 introduction 745(1)
23.2 Flow Parallel to a Plane Wall 746(6)
23.2.1 Laminar Boundary Layer Flow 746(3)
23.2.2 Turbulent Boundary Layer Flow 749(1)
23.2.3 Additional Considerations 750(2)
23.2.3.1 Constant Heat Flux Wall Condition 750(1)
23.2.3.2 Unheated Starting Length 751(1)
23.3 External Flow over Bluff Bodies 752(10)
23.3.1 The Cylinder in Cross Flow 752(4)
23.3.2 Tube Bundles in Cross Flow 756(5)
23.3.3 Single Spheres 761(1)
23.3.4 Bodies with Noncircular Cross Sections 761(1)
23.4 Design Example 15 762(3)
23.5 Summary 765(1)
23.6 Problems 766(7)
24 Free or Natural Convection 773(32)
24.1 Introduction 773(1)
24.2 Governing Parameters 774(3)
24.3 Working Correlations for Natural Convection 777(9)
24.3.1 Introduction 777(1)
24.3.2 Plane Surfaces 777(2)
24.3.2.1 Vertical Plates 777(2)
24.3.2.2 Inclined Plates 779(1)
24.3.3 Vertical Cylinders 779(2)
24.3.4 Horizontal Cylinders 781(3)
24.3.5 Spheres 784(1)
24.3.6 Horizontal Plates 784(2)
24.4 Natural Convection in Parallel Plate Channels 786(5)
24.4.1 The Elenbaas Correlation 786(2)
24.4.2 A Composite Relation 788(2)
24.4.3 Optimum Plate Spacing 790(1)
24.5 Design Example 16 791(4)
24.6 Natural Convection in Enclosures 795(4)
24.6.1 Working Correlations 796(1)
24.6.1.1 Vertical Rectangular Enclosures 796(1)
24.6.1.2 Tilted Vertical Enclosures 796(1)
24.6.2 Concentric Cylinders 797(1)
24.6.3 Concentric Spheres 798(1)
24.7 Summary 799(1)
24.8 Problems 799(6)
25 Heat Exchangers 805(44)
25.1 Introduction 805(2)
25.2 Governing Relationships 807(11)
25.2.1 The Rate Equation 807(1)
25.2.2 The Exchanger Surface Area 807(1)
25.2.3 The Overall Heat Transfer Coefficient 808(3)
25.2.4 The Logarithmic Mean Temperature Difference 811(4)
25.2.5 Fouling 815(3)
25.2.5.1 Fouling Mechanisms 815(1)
25.2.5.2 Fouling Factors 816(2)
25.3 Heat Exchanger Analysis Methods 818(11)
25.3.1 The Logarithmic Mean Temperature Difference Correction Factor Method 818(6)
25.3.2 The Effectiveness Ntu Method 824(10)
25.3.2.1 Dimensionless Parameters 824(1)
25.3.2.2 Specific Effectiveness E-Ntu Relationships 825(4)
25.4 Design Example 17 829(5)
25.5 Finned Heat Exchangers 834(6)
25.5.1 The Surface Area and the Overall Surface Efficiency 835(1)
25.5.2 The Overall Heat Transfer Coefficient 836(4)
25.6 Summary 840(1)
25.7 Problems 841(8)
26 Radiation Heat Transfer 849(50)
26.1 The Electromagnetic Spectrum 849(1)
26.2 Monochromatic Emissive Power 850(5)
26.2.1 The Black Surface or Blackbody 850(1)
26.2.2 Planck's Law 851(1)
26.2.3 Wien's Displacement Law 851(1)
26.2.4 The Stefan-Boltzmann Law 852(3)
26.3 Radiation Properties and Kirchhoff's Law 855(4)
26.3.1 Absorptivity, Reflectivity, and Transmissivity 855(1)
26.3.2 Kirchhoff's Radiation Law 856(1)
26.3.3 Emissivity 857(1)
26.3.4 An Approximation to a Blackbody 858(1)
26.4 Radiation Intensity and Lambert's Cosine Law 859(2)
26.5 Monochromatic and Total Emissivity and Absorptivity 861(2)
26.5.1 Emissivity 861(1)
26.5.2 Absorptivity 862(1)
26.5.3 The Gray Surface or Gray Body 863(1)
26.6 Heat Flow between Blackbodies 863(13)
26.6.1 The Shape Factor 863(4)
26.6.2 A Catalog of Simple Shape Factors in Two Dimensions 867(4)
26.6.3 A Catalog of Simple Shape Factors in Three Dimensions 871(2)
26.6.4 Properties of the Shape Factor 873(3)
26.6.4.1 The Reciprocity Property 873(1)
26.6.4.2 The Additivity Property 873(1)
26.6.4.3 The Enclosure Property 873(3)
26.6.5 The Symmetry Property 876(1)
26.7 Heat Flow by Radiation between Two Bodies 876(3)
26.7.1 Diffuse Blackbodies 876(1)
26.7.2 Opaque Gray Bodies 876(3)
26.8 Radiosity and Irradiation 879(1)
26.9 Radiation within Enclosures by a Network Method 880(4)
26.10 Summary 884(1)
26.11 Problems 885(14)
Appendix A: Tables and Charts 899(36)
Appendix B: Summary of Differential Vector Operations in Three Coordinate Systems 935(4)
References and Additional Readings 939(4)
Nomenclature 943(4)
Index 947
Preface xix
1 The Thermal/Fluid Sciences: Introductory Concepts 1(14)
1.1 Introduction 1(2)
1.2 Thermodynamics 3(1)
1.3 Fluid Mechanics 4(1)
1.4 Heat Transfer 5(1)
1.5 Engineered Systems and Products 5(4)
1.5.1 Case I: A Commercial Airliner 5(2)
1.5.2 Case II: A Chemical Plant Distillation Column 7(1)
1.5.3 Case III: The Thermal Ink Jet Printer 8(1)
1.6 Historical Development 9(2)
1.6.1 Thermodynamics 9(1)
1.6.2 Fluid Mechanics 9(1)
1.6.3 Heat Transfer 10(1)
1.7 The Thermal/Fluid Sciences and the Environment 11(3)
1.7.1 The Ozone Layer 11(1)
1.7.2 Smog 12(1)
1.7.3 Acid Rain 13(1)
1.8 Summary 14(1)
2 Thermodynamics: Preliminary Concepts and Definitions 15(22)
2.1 The Study of Thermodynamics 15(1)
2.2 Some Definitions 16(5)
2.2.1 Systems 16(1)
2.2.2 Fluids 17(1)
2.2.3 Substances 17(1)
2.2.4 State and Properties 18(1)
2.2.5 Processes 18(1)
2.2.6 Thermodynamic Equilibrium 19(1)
2.2.6.1 Requirements for Thermodynamic Equilibrium 19(1)
2.2.6.2 Quasi-Equilibrium or Quasi-Static Processes 20(1)
2.2.7 Statistical and Classical Thermodynamics 20(1)
2.3 Dimensions and Units 21(5)
2.3.1 Introduction 21(1)
2.3.2 The SI (Systeme Internationale D'unites) System 21(2)
2.3.3 The English Engineering System 23(3)
2.3.3.1 The British Gravitational System 25(1)
2.3.4 SI Unit Prefixes 26(1)
2.4 Density and Related Properties 26(2)
2.5 Pressure 28(1)
2.5.1 Gage, Absolute, and Vacuum Pressure 28(1)
2.5.2 Measuring Pressure 28(1)
2.6 Temperature and the Zeroth Law of Thermodynamics 29(3)
2.7 Problem-Solving Methodology 32(1)
2.8 Summary 33(1)
2.9 Problems 33(4)
3 Energy and the First Law of Thermodynamics 37(36)
3.1 Introduction 37(1)
3.2 Kinetic, Potential, and Internal Energy 38(4)
3.2.1 Kinetic Energy 38(1)
3.2.2 Potential Energy 39(1)
3.2.3 Internal Energy 40(1)
3.2.4 The Total Energy 40(2)
3.3 Work 42(3)
3.3.1 Power 45(1)
3.4 Heat 45(1)
3.5 The First Law of Thermodynamics 46(1)
3.6 The Energy Balance for Closed Systems 47(8)
3.6.1 Processes 47(3)
3.6.2 Other Forms of Work 50(3)
3.6.2.1 Shaft or Paddle Wheel Work 50(1)
3.6.2.2 Electrical Work 50(1)
3.6.2.3 Spring Work 51(1)
3.6.2.4 Two Additional Examples 52(1)
3.6.3 Cycles 53(2)
3.7 The Ideal Gas Model 55(3)
3.8 Ideal Gas Enthalpy and Specific Heats 58(4)
3.9 Processes of an Ideal Gas 62(4)
3.9.1 Introduction 62(1)
3.9.2 The Constant Volume Process 63(1)
3.9.3 The Constant Pressure Process 63(1)
3.9.4 The Isothermal Process 64(2)
3.10 Summary 66(2)
3.11 Problems 68(5)
4 Properties of Pure, Simple Compressible Substances 73(36)
4.1 The State Postulate 73(1)
4.2 P-v-T Relationships 74(4)
4.2.1 Introduction 74(1)
4.2.2 The P-v-T Surface 74(1)
4.2.3 Single-Phase Regions 75(1)
4.2.4 Two-Phase Regions 76(1)
4.2.5 Three-Phase Regions 76(1)
4.2.6 The P-T Surface 76(1)
4.2.7 The P-v Surface 77(1)
4.2.8 Some Hints For Phase Determination 78(1)
4.3 Thermodynamic Property Data 78(12)
4.3.1 Table Arrangement 78(1)
4.3.2 The Saturation Tables 78(6)
4.3.3 The Superheated Vapor Tables 84(2)
4.3.4 The Compressed or Subcooled Liquid Region 86(4)
4.4 The T-s and h-s Diagrams 90(1)
4.5 Real Gas Behavior 91(3)
4.5.1 Introduction 91(1)
4.5.2 The Compressibility Factor 92(1)
4.5.3 The Principle of Corresponding States 93(1)
4.6 Equations of State 94(4)
4.6.1 The Van der Waals Equation 95(1)
4.6.2 The Redlich-Kwong Equation of State 95(3)
4.7 The Polytropic Process for an Ideal Gas 98(4)
4.7.1 P-V-T Relationships 98(1)
4.7.2 Work 99(1)
4.7.3 Internal Energy and Enthalpy 99(1)
4.7.4 Heat Transfer 99(3)
4.8 Summary 102(1)
4.9 Problems 103(6)
5 Control Volume Mass and Energy Analysis 109(40)
5.1 Introduction 109(1)
5.2 The Control Volume 110(1)
5.3 Conservation of Mass 110(4)
5.3.1 The Mass Balance 110(1)
5.3.2 The Volumetric Flow Rate 111(3)
5.4 Conservation of Energy for a Control Volume 114(4)
5.4.1 Introduction 114(1)
5.4.2 The Energy Rate Balance 115(1)
5.4.3 Flow Work 116(1)
5.4.4 The Control Volume Energy Equation 117(1)
5.5 Specific Heats of Incompressible Substances 118(1)
5.6 Applications of Control Volume Energy Analysis 119(18)
5.6.1 Introduction 119(1)
5.6.2 The Nozzle and the Diffuser 119(3)
5.6.3 The Turbine 122(2)
5.6.4 The Compressor 124(2)
5.6.5 Pumps 126(2)
5.6.6 The Mixing Chamber 128(2)
5.6.7 Heat Exchangers 130(4)
5.6.8 The Throttling Valve 134(3)
5.7 Synthesis or Analysis? 137(1)
5.8 The First Law Heat Balance 138(1)
5.9 Design Example 1 139(1)
5.10 Summary 140(1)
5.11 Problems 141(8)
6 The Second Law of Thermodynamics 149(34)
6.1 Introduction 149(1)
6.2 The Kelvin-Planck Statement and Heat Engines 150(4)
6.3 The Clausius Statement: Refrigerators and Heat Pumps 154(4)
6.4 The Equivalence of the Kelvin-Planck and Clausius Statements 158(1)
6.5 Reversible and Irreversible Processes 159(1)
6.6 The Carnot Cycle 160(6)
6.7 The Carnot Cycle with External Irreversibilities 166(3)
6.8 The Absolute Temperature Scales 169(1)
6.9 Summary 169(2)
6.10 Problems 171(12)
7 Entropy 183(36)
7.1 Introduction 183(1)
7.2 The Classical Definition of Entropy 184(1)
7.3 The Clausius Inequality 185(2)
7.4 The Temperature-Entropy Diagram 187(4)
7.5 The Gibbs Property Relations 191(1)
7.6 Entropy Change for Solids, Liquids, and Ideal Gases 192(3)
7.6.1 Entropy Change for Solids and Liquids 193(1)
7.6.2 Entropy Change for an Ideal Gas 194(1)
7.7 The Isentropic Process for an Ideal Gas 195(3)
7.8 Isentropic Efficiencies of Steady Flow Devices 198(7)
7.9 The Entropy Balance Equation 205(5)
7.9.1 The Entropy Balance for Closed Systems 205(2)
7.9.2 The Entropy Rate Balance for an Open System (Control Volume) 207(3)
7.10 Summary 210(1)
7.11 Problems 211(8)
8 Gas Power Systems 219(42)
8.1 Introduction 219(1)
8.2 The Internal Combustion Engine 220(2)
8.3 The Air Standard Otto Cycle 222(8)
8.3.1 Performance 222(7)
8.3.2 The Compression Ratio and Its Effect on Performance 229(1)
8.4 Design Example 2 230(2)
8.5 The Air Standard Diesel Cycle 232(5)
8.6 The Gas Turbine 237(9)
8.6.1 Introduction 237(1)
8.6.2 The Ideal Gas Turbine or Brayton Cycle 238(5)
8.6.3 The Ideal Brayton Cycle with Regeneration 243(3)
8.7 The Jet Engine 246(5)
8.8 Summary 251(3)
8.9 Problems 254(7)
9 Vapor Power and Refrigeration Cycles 261(42)
9.1 Introduction 261(1)
9.2 The Steam Power Plant 261(2)
9.3 The Ideal Rankine Cycle 263(6)
9.3.1 The Ideal Rankine Cycle 263(5)
9.3.2 Increasing the Efficiency of the Ideal Rankine Cycle 268(1)
9.4 The Ideal Rankine Cycle with Superheat 269(3)
9.5 The Effect of Irreversibilities 272(3)
9.6 The Rankine Cycle with Superheat and Reheat 275(5)
9.7 Design Example 3 280(2)
9.8 The Ideal Rankine Cycle with Regeneration 282(4)
9.9 The Ideal Refrigeration Cycle 286(2)
9.9.1 Physical Description 286(2)
9.9.2 Refrigerants 288(1)
9.10 The Ideal Vapor Compression Refrigeration Cycle 288(4)
9.11 Departures from the Ideal Refrigeration Cycle 292(1)
9.12 Summary 293(3)
9.13 Problems 296(7)
10 Mixtures of Gases, Vapors, and Combustion Products 303(26)
10.1 Introduction 303(1)
10.2 Mixtures of Ideal Gases 303(5)
10.2.1 Development 303(1)
10.2.2 Dalton's Law of Partial Pressures 304(1)
10.2.3 Gravimetric and Volumetric Analyses 305(1)
10.2.4 The Apparent Molecular Weight and Gas Constant 305(1)
10.2.5 Properties of Ideal Gas Mixtures 306(2)
10.3 Psychrometrics 308(6)
10.3.1 Introduction 308(1)
10.3.2 Specific and Relative Humidity 309(2)
10.3.3 Other Properties 311(1)
10.3.4 The Wet Bulb Temperature 311(3)
10.4 The Psychrometric Chart 314(2)
10.5 The Products of Combustion 316(6)
10.5.1 Fuels 316(1)
10.5.2 The Combustion Process 317(1)
10.5.3 Combustion Air 318(1)
10.5.4 The Air-Fuel Ratio 319(3)
10.6 Summary 322(1)
10.7 Problems 323(6)
11 Introduction to Fluid Mechanics 329(32)
11.1 The Definition of a Fluid 329(1)
11.2 Fluid Properties and Flow Properties 330(1)
11.3 The Variation of Properties in a Fluid 331(3)
11.4 The Continuum Concept 334(1)
11.5 Laminar and Turbulent Flow 335(1)
11.6 Fluid Stress Conventions and Concepts 336(4)
11.7 Viscosity, a Fluid Property 340(5)
11.8 Design Example 4 345(1)
11.9 Other Fluid Properties 346(5)
11.9.1 Specific Gravity and Specific Weight 346(1)
11.9.2 Compressibility 346(1)
11.9.3 The Speed of Sound 347(1)
11.9.4 Surface Tension and Capillary Action 348(3)
11.10 Summary 351(1)
11.11 Problems 352(9)
12 Fluid Statics 361(46)
12.1 Introduction 361(1)
12.2 Pressure Variation in a Static Field 361(2)
12.3 Hydrostatic Pressure 363(6)
12.4 Hydrostatic Forces on Plane Surfaces 369(5)
12.5 Design Example 5 374(3)
12.6 Hydrostatic Forces on Curved Surfaces 377(1)
12.7 Buoyancy 378(2)
12.8 Stability 380(3)
12.9 Uniform Rectilinear Acceleration 383(3)
12.10 Summary 386(1)
12.11 Problems 386(21)
13 Control Volume Analysis-Mass and Energy Conservation 407(34)
13.1 Introduction 407(1)
13.2 Fundamental Laws 407(1)
13.3 Conservation of Mass 408(1)
13.4 Mass Conservation Applications 408(6)
13.5 The First Law of Thermodynamics for a Control Volume 414(1)
13.6 Applications of the Control Volume Expression for the First Law 415(4)
13.7 The Bernoulli Equation 419(4)
13.8 Design Example 6 423(3)
13.9 Summary 426(1)
13.10 Problems 426(15)
14 Newton's Second Law of Motion 441(36)
14.1 Introduction 441(1)
14.2 Linear Momentum 441(2)
14.3 Applications of the Control Volume Expression 443(9)
14.4 Design Example 7 452(2)
14.5 The Control Volume Relation for the Moment of Momentum 454(2)
14.6 Applications of the Moment of Momentum Relationship 456(4)
14.7 Summary 460(1)
14.8 Problems 460(17)
15 Dimensional Analysis and Similarity 477(26)
15.1 Introduction 477(1)
15.2 Fundamental Dimensions 477(1)
15.3 The Buckingham Pi Theorem 478(5)
15.4 Reduction of Differential Equations to a Dimensionless Form 483(2)
15.5 Dimensional Analysis of Rotating Machines 485(3)
15.6 Similarity 488(4)
15.7 Summary 492(1)
15.8 Problems 492(11)
16 Viscous Flow 503(20)
16.1 Introduction 503(1)
16.2 Reynolds' Experiment 503(2)
16.3 Fluid Drag 505(5)
16.4 Design Example 8 510(2)
16.5 Boundary Layer Flow over a Flat Plate 512(4)
16.6 Summary 516(1)
16.7 Problems 517(6)
17 Flow in Pipes and Pipe Networks 523(40)
17.1 Introduction 523(1)
17.2 Frictional Loss in Pipes 524(1)
17.3 Dimensional Analysis of Pipe Flow 525(2)
17.4 Fully Developed Flow 527(1)
17.5 Friction Factors for Fully Developed Flow 528(2)
17.5.1 Laminar Flow 528(1)
17.5.2 Turbulent Flow 529(1)
17.6 Friction Factor and Head Loss Determination for Pipe Flow 530(11)
17.6.1 Pipe Friction Factor 530(1)
17.6.2 Head Loss Due to Fittings and Valves 530(4)
17.6.3 Noncircular Flow Passages 534(1)
17.6.4 Single-Path Pipe Systems 534(7)
17.7 Design Example 9 541(3)
17.8 Design Example 10 544(2)
17.9 Design Example 11 546(4)
17.10 Multiple-Path Pipe Systems 550(4)
17.11 Summary 554(1)
17.12 Problems 554(9)
18 Fluid Machinery 563(28)
18.1 Introduction 563(1)
18.2 The Centrifugal Pump 564(7)
18.2.1 Introduction 564(2)
18.2.2 Theoretical Considerations 566(5)
18.3 The Net Positive Suction Head 571(3)
18.4 Combining Pump and System Performance 574(2)
18.5 Scaling Laws for Pumps and Fans 576(4)
18.6 Axial and Mixed Flow Pumps 580(1)
18.7 Turbines 581(1)
18.8 Summary 581(1)
18.9 Problems 582(9)
19 Introduction to Heat Transfer 591(18)
19.1 Introduction 591(1)
19.2 Conduction 591(2)
19.3 Thermal Conductivity 593(3)
19.4 Convection 596(1)
19.5 Radiation 596(1)
19.6 Thermal Resistance 597(1)
19.7 Combined Mechanisms of Heat Transfer 598(3)
19.8 The Overall Heat Transfer Coefficient 601(2)
19.9 Summary 603(1)
19.10 Problems 604(5)
20 Steady-State Conduction 609(58)
20.1 Introduction 609(1)
20.2 The General Equation of Heat Conduction 610(3)
20.3 Conduction in Plane Walls 613(13)
20.3.1 The Single-Material Layer 613(5)
20.3.2 The Composite Plane Wall 618(4)
20.3.3 Contact Resistance 622(4)
20.4 Radial Heat Flow 626(10)
20.4.1 Cylindrical Coordinates 626(6)
20.4.1.1 The Hollow Cylinder 626(2)
20.4.1.2 The Composite Hollow Cylinder 628(3)
20.4.1.3 The Critical Radius of Insulation 631(1)
20.4.2 Spherical Coordinates 632(4)
20.4.2.1 The Hollow Sphere 633(1)
20.4.2.2 The Composite Hollow Sphere 634(2)
20.5 Simple Shapes with Heat Generation 636(6)
20.5.1 The Plane Wall 636(3)
20.5.2 The Cylinder 639(1)
20.5.3 The Sphere 640(2)
20.6 Extended Surfaces 642(9)
20.6.1 Introduction 642(1)
20.6.2 The Longitudinal Fin of Uniform Thickness 642(3)
20.6.2.1 Constant Base Temperature with Tip Heat Loss 644(1)
20.6.2.2 Constant Base Temperature with Insulated Tip 645(1)
20.6.3 Fin Performance Criteria 645(2)
20.6.4 The Cylindrical Spine or Pin Fin 647(2)
20.6.5 Annular or Radial Fin of Uniform Thickness 649(2)
20.7 Two-Dimensional Conduction 651(5)
20.7.1 Introduction 651(1)
20.7.2 Solution Methods 652(1)
20.7.3 The Conduction Shape Factor Method 652(4)
20.8 Summary 656(1)
20.9 Problems 657(10)
21 Unsteady-State Conduction 667(40)
21.1 Introduction 667(1)
21.2 The Lumped Capacitance Model 668(5)
21.2.1 Convective Cooling 668(1)
21.2.2 The Validity Criterion 669(2)
21.2.3 The Effect of Internal Heat Generation 671(2)
21.3 The Semi-Infinite Solid 673(4)
21.3.1 Constant Surface Temperature 674(1)
21.3.2 Constant Surface Heat Flux 675(1)
21.3.3 Surface Convection 675(2)
21.4 Design Example 12 677(1)
21.5 Finite-Sized Solids 678(21)
21.5.1 The Long Plane Wall 678(6)
21.5.2 One-Term Approximate Solutions 684(2)
21.5.3 The Long Solid Cylinder 686(5)
21.5.4 One-Term Approximate Solutions 691(2)
21.5.5 The Solid Sphere 693(2)
21.5.6 One-Term Approximate Solutions 695(4)
21.6 Summary 699(2)
21.7 Problems 701(6)
22 Forced Convection-Internal Flow 707(38)
22.1 Introduction 707(1)
22.2 Temperature Distributions with Internal Forced Convection 708(6)
22.2.1 The Constant Wall Heat Flux Case 708(3)
22.2.2 The Constant Wall Temperature Case 711(3)
22.3 Convective Heat Transfer Coefficients 714(4)
22.3.1 Case 1 Laminar Flow 717(1)
22.3.2 Case 2 Transition Flow 718(1)
22.3.3 Case 3 Turbulent Flow 718(1)
22.4 Applications of Internal Flow Forced Convection Correlations 718(8)
22.5 Design Example 13 726(4)
22.6 Design Example 14 730(5)
22.7 Summary 735(1)
22.8 Problems 736(9)
23 Forced Convection-External Flow 745(28)
23.1 introduction 745(1)
23.2 Flow Parallel to a Plane Wall 746(6)
23.2.1 Laminar Boundary Layer Flow 746(3)
23.2.2 Turbulent Boundary Layer Flow 749(1)
23.2.3 Additional Considerations 750(2)
23.2.3.1 Constant Heat Flux Wall Condition 750(1)
23.2.3.2 Unheated Starting Length 751(1)
23.3 External Flow over Bluff Bodies 752(10)
23.3.1 The Cylinder in Cross Flow 752(4)
23.3.2 Tube Bundles in Cross Flow 756(5)
23.3.3 Single Spheres 761(1)
23.3.4 Bodies with Noncircular Cross Sections 761(1)
23.4 Design Example 15 762(3)
23.5 Summary 765(1)
23.6 Problems 766(7)
24 Free or Natural Convection 773(32)
24.1 Introduction 773(1)
24.2 Governing Parameters 774(3)
24.3 Working Correlations for Natural Convection 777(9)
24.3.1 Introduction 777(1)
24.3.2 Plane Surfaces 777(2)
24.3.2.1 Vertical Plates 777(2)
24.3.2.2 Inclined Plates 779(1)
24.3.3 Vertical Cylinders 779(2)
24.3.4 Horizontal Cylinders 781(3)
24.3.5 Spheres 784(1)
24.3.6 Horizontal Plates 784(2)
24.4 Natural Convection in Parallel Plate Channels 786(5)
24.4.1 The Elenbaas Correlation 786(2)
24.4.2 A Composite Relation 788(2)
24.4.3 Optimum Plate Spacing 790(1)
24.5 Design Example 16 791(4)
24.6 Natural Convection in Enclosures 795(4)
24.6.1 Working Correlations 796(1)
24.6.1.1 Vertical Rectangular Enclosures 796(1)
24.6.1.2 Tilted Vertical Enclosures 796(1)
24.6.2 Concentric Cylinders 797(1)
24.6.3 Concentric Spheres 798(1)
24.7 Summary 799(1)
24.8 Problems 799(6)
25 Heat Exchangers 805(44)
25.1 Introduction 805(2)
25.2 Governing Relationships 807(11)
25.2.1 The Rate Equation 807(1)
25.2.2 The Exchanger Surface Area 807(1)
25.2.3 The Overall Heat Transfer Coefficient 808(3)
25.2.4 The Logarithmic Mean Temperature Difference 811(4)
25.2.5 Fouling 815(3)
25.2.5.1 Fouling Mechanisms 815(1)
25.2.5.2 Fouling Factors 816(2)
25.3 Heat Exchanger Analysis Methods 818(11)
25.3.1 The Logarithmic Mean Temperature Difference Correction Factor Method 818(6)
25.3.2 The Effectiveness Ntu Method 824(10)
25.3.2.1 Dimensionless Parameters 824(1)
25.3.2.2 Specific Effectiveness E-Ntu Relationships 825(4)
25.4 Design Example 17 829(5)
25.5 Finned Heat Exchangers 834(6)
25.5.1 The Surface Area and the Overall Surface Efficiency 835(1)
25.5.2 The Overall Heat Transfer Coefficient 836(4)
25.6 Summary 840(1)
25.7 Problems 841(8)
26 Radiation Heat Transfer 849(50)
26.1 The Electromagnetic Spectrum 849(1)
26.2 Monochromatic Emissive Power 850(5)
26.2.1 The Black Surface or Blackbody 850(1)
26.2.2 Planck's Law 851(1)
26.2.3 Wien's Displacement Law 851(1)
26.2.4 The Stefan-Boltzmann Law 852(3)
26.3 Radiation Properties and Kirchhoff's Law 855(4)
26.3.1 Absorptivity, Reflectivity, and Transmissivity 855(1)
26.3.2 Kirchhoff's Radiation Law 856(1)
26.3.3 Emissivity 857(1)
26.3.4 An Approximation to a Blackbody 858(1)
26.4 Radiation Intensity and Lambert's Cosine Law 859(2)
26.5 Monochromatic and Total Emissivity and Absorptivity 861(2)
26.5.1 Emissivity 861(1)
26.5.2 Absorptivity 862(1)
26.5.3 The Gray Surface or Gray Body 863(1)
26.6 Heat Flow between Blackbodies 863(13)
26.6.1 The Shape Factor 863(4)
26.6.2 A Catalog of Simple Shape Factors in Two Dimensions 867(4)
26.6.3 A Catalog of Simple Shape Factors in Three Dimensions 871(2)
26.6.4 Properties of the Shape Factor 873(3)
26.6.4.1 The Reciprocity Property 873(1)
26.6.4.2 The Additivity Property 873(1)
26.6.4.3 The Enclosure Property 873(3)
26.6.5 The Symmetry Property 876(1)
26.7 Heat Flow by Radiation between Two Bodies 876(3)
26.7.1 Diffuse Blackbodies 876(1)
26.7.2 Opaque Gray Bodies 876(3)
26.8 Radiosity and Irradiation 879(1)
26.9 Radiation within Enclosures by a Network Method 880(4)
26.10 Summary 884(1)
26.11 Problems 885(14)
Appendix A: Tables and Charts 899(36)
Appendix B: Summary of Differential Vector Operations in Three Coordinate Systems 935(4)
References and Additional Readings 939(4)
Nomenclature 943(4)
Index 947
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×