Advanced engineering mathematics = 高等工程数学 / 2nd ed.

副标题:无

作   者:Michael D. Greenberg著.

分类号:

ISBN:9787505397156

微信扫一扫,移动浏览光盘

简介

   本书系统地介绍了工程数学的基本原理与实践应用。全书共分5部分。第1部分介绍一阶、二阶及高阶线性方程,拉普拉斯变换,微分方程数值解,相平面和非线性微分方程;第2部分研究线性代数方程系统,高斯消去法,向量空间,矩阵与线性方程,本征值问题;第3部分阐述标量场与向量场理论,多变数方程,三维向量,曲线,面,体;第4部分分析傅里叶级数,偏微分方程,傅里叶积分,傅里叶变换,扩散方程,波动方程,拉普拉斯方程;第5部分描述复变函数方程,保角映射,复变函数积分,泰勒级数,洛朗级数,残数定理。    本书适合作为高等院校数学专业或工程学专业本科生或研究生的教材,也可供教师和工程师学习和参考。对于自学者,也是一本难得的参考书。   

目录

part i: ordinary differential equations

1 introduction to differential equations 1

1.1 introduction 1

1.2 definitions 2

1.3 introduction to modeling 9

2 equations of first order 18

2.1 introduction 18

2.2 the linear equation 19

2.2.1 homogeneous case 19

2.2.2 integrating factor method 22

2.2.3 existence and uniqueness for the linear equation 25

2.2.4 variation-of-parameter method 27

2.3 applications of the linear equation 34

2.3.1 electrical circuits 34

2.3.2 radioactive decay; carbon dating 39

2.3.3 population dynamics 41

2.3.4 mixing problems 42

2.4 separable equations 46

2.4.1 separable equations 46

2.4.2 existence and uniqueness (optional) 48

.2.4.3 applications 53

2.4.4 nondimensionalization (optional) 56

2.5 exact equations and integrating factors 62

2.5.1 exact differential equations 62

2.5.2 integrating factors 66

chapter 2 review 71

3 linear differential equations of second order and higher 73

3.1 introduction 73

3.2 linear dependence and linear independence 76

3.3 homogeneous equation: general solution 83

3.3.1 general solution 83

3.3.2 boundary-value problems 88

3.4 solution of homogeneous equation: constant coefficients 91

3.4.1 euler's formula and review of the circular and hyperbolic functions 91

3.4.2 exponential solutions 95

3.4.3 higher-order equations (n]2) 99

3.4.4 repeated roots 102

3.4.5 stability 105

3.5 application to harmonic oscillator: free oscillation 110

3.6 solution of homogeneous equation: nonconstant coefficients 117

3.6.1 cauchy-euler equation 118

3.6.2 reduction of order (optional) 123

3.6.3 factoring the operator (optional) 126

3.7 solution of nonhomogeneous equation 133

3.7.1 general solution 134

3.7.2 undetermined coefficients 136

3.7.3 variation of parameters 141

3.7.4 variation of parameters for higher-order equations (optional) 144

3.8 application to harmonic oscillator: forced oscillation 149

3.8.1 undamped case 149

3.8.2 damped case 152

3.9 systems of linear differential equations 156

3.9.1 examples 157

3.9.2 existence and uniqueness 160

3.9.3 solution by elimination 162

chapter 3 review 171

power series solutions 173

4.1 introduction 173

4.2 power series solutions 176

4.2.1 review of power series 176

4.2.2 power series solution of differential equations 182

4.3 the method of frobenius 193

4.3.1 singular points 193

4.3.2 method of frobenius 195

4.4 legendre functions 212

4.4.1 legendre polynomials 212

4.4.2 onhogonality of the pn's 214

4.4.3 generating functions and properties 215

4.5 singular integrals; gamma function 218

4.5.1 singular integrals 218

4.5.2 gamma function 223

4.5.3 order of magnitude 225

4.6 bessel functions 230

4.6.1 v integer 231

4.6.2 v=integer 233

4.6.3 general solution of bessel equation 235

4.6.4 hankel functions (optional) 236

4.6.5 modified bessel equation 236

4.6.6 equations reducible to bessel equations 238

chapter 4 review 245

5 laplace transform 247

5.1 introduction 247

5.2 calculation of the transform 248

5.3 properties of the transform 254

5.4 application to the solution of differential equations 261

5.5 discontinuous forcing functions; heaviside step function 269

5.6 impulsive forcing functions; dirac impulse function (optional) 275

5.7 additional properties 281

chapter 5 review 290

6 quantitative methods: numerical solution

of differential equations 292

6. l introduction 292

6.2 euler's method 293

6.3 improvements: midpoint rule and runge-kutta 299

6.3.1 midpoint rule 299

6.3.2 second-order runge-kutta 302

6.3.3 fourth-order runge-kutta 304

6.3.4 empirical estimate of the order (optional) 307

6.3.5 multi-step and predictor-col-rector methods (optional) 308

6.4 application to systems and boundary-value problems 313

6.4.1 systems and higher-order equations 313

6.4.2 linear boundary-value problems 317

6.5 stability and difference equations 323

6.5.1 introduction 323

6.5.2 stability 324

6.5.3 difference equations (optional) 328

chapter 6 review 335

7 qualitative methods: phase plane and nonlinear

differential equations 337

7.1 introduction 337

7.2 the phase plane 338

7.3 singular points and stability 348

7.3.1 existence and uniqueness 348

7.3.2 singular points 350

7.3.3 the elementary singularities and their stability 352

7.3.4 nonelementary singularities 357

7.4 applications 359

7.4.1 singularities of nonlinear systems 360

7.4.2 applications 363

7.4.3 bifurcations 368

7.5 limit cycles, van der pol equation, and the nerve impulse 372

7.5.1 limit cycles and the van der pol equation 372

7.5.2 application to the nerve impulse and visual perception 375

7.6 the duffing equation: jumps and chaos 380

7.6.1 duffing equation and the jump phenomenon 380

7.6.2 chaos. 383

chapter 7 review 389

part ii: linear algebra

8 systems of linear algebraic equations; gauss elimination 391

8.1 introduction 391

8.2 preliminary ideas and geometrical approach 392

8.3 solution by gauss elimination 396

8.3.1 motivation 396

8.3.2 gauss elimination 401

8.3.3 matrix notation 402

8.3.4 gauss-jordan reduction 404

8.3.5 pivoting 405

chapter 8 review 410

9 vector space 412

9.1 introduction 412

9.2 vectors; geometrical representation 412

9.3 introduction of angle and dot product 416

9.4 n-space 418

9.5 dot product, norm, and angle for n-space 421

9.5.1 dot product, norm, and angle 421

9.5.2 properties of the dot product 423

9.5.3 properties of the norm 425

9.5.4 orthogonality 426

9.5.5 normalization 427

9.6 generalized vector space 430

9.6.1 vector space 430

9.6.2 inclusion of inner product and/or norm 433

9.7 span and subspace 439

9.8 linear dependence 444

9.9 bases, expansions, dimension 448

9.9.1 bases and expansions 448

9.9.2 dimension 450

9.9.3 orthogonal bases 453

9.10 best approximation 457

9.10.1 best approximation and orthogonal projection 458

9.10.2 kronecker delta 461

chapter 9 review 462

10 matrices and linear equations 465

10.1 introduction 465

10.2 matrices and matrix algebra 465

10.3 the transpose matrix 481

10.4 determinants 486

10.5 rank; application to linear dependence and to existence

and uniqueness for ax=c 495

10.5.1 rank 495

10.5.2 application of rank to the system ax =c 500

10.6 inverse matrix, cramer's rule, factorization 508

10.6.1 inverse matrix 508

10.6.2 application to a mass-spring system 514

10.6.3 cramer's rule 517

10.6.4 evaluation of a- 1 by elementary row operations 518

10.6.5 lu-factorization 520

10.7 change of basis (optional) 526

10.8 vector transformation (optional) 530

chapter 10 review 539

11 the eigenvalue problem 541

11.1 introduction 541

11.2 solution procedure and applications 542

11.2.1 solution and applications 542

11.2.2 application to elementary singularities in the phase plane 549

11.3 symmetric matrices 554

11.3.1 eigenvalue problem ax =x 554

11.3.2 nonhomogeneous problem ax = x+c (optional) 561

11.4 diagonalization 569

11.5 application to first-order systems with constant coefficients (optional) 583

i 1.6 quadratic forms (optional) 589

chapter 11 review 596

12 extension to complex case (optional) 599

12.1 introduction 599

12.2 complex n-space 599

12.3 complex matrices 603

chapter 12 review 611

part iii: scalar and vector field theory

13 differential calculus of functions of several variables 613

13.1 introduction 613

13.2 preliminaries 614

13.2.1 functions 614

13.2.2 point set theory definitions 614

13.3 partial derivatives 620

13.4 composite functions and chain differentiation 625

13.5 taylor's formula and mean value theorem 629

13.5.1 taylor's formula and taylor series for f(x) 630

13.5.2 extension to functions of more than one variable 636

13.6 implicit functions and jacobians 642

13.6.1 implicit function theorem 642

13.6.2 extension to multivariable case 645

13.6.3 jacobians 649

13.6.4 applications to change of variables 652

13.7 maxima and minima 656

13.7.1 single variable case 656

13.7.2 multivariable case 658

13.7.3 constrained extrema and lagrange multipliers 665

13.8 leibniz rule 675

chapter 13 review 681

14 vectors in 3-space 683

14.1 introduction 683

14.2 dot and cross product 683

14.3 cartesian coordinates 687

14.4 multiple products 692

14.4.1 scalar triple product 692

14.4.2 vector triple product 693

14.5 differentiation of a vector function of a single variable 695

14.6 non-cartesian coordinates (optional) 699

14.6.1 plane polar coordinates 700

14.6.2 cylindrical coordinates 704

14.6.3 spherical coordinates 705

14.6.4 omega method 707

chapter 14 review 712

15 curves, surfaces, and volumes 714

15.1 introduction 714

15.2 carves and line integrals 714

15.2.1 curves 714

15.2.2 arc length 716

15.2.3 line integrals 718

15.3 double and triple integrals 723

15.3.1 double integrals 723

15.3.2 triple integrals 727

15.4 surfaces 733

15.4.1 parametric representation of surfaces 733

15.4.2 tangent plane and normal 734

15.5 surface integrals 739

15.5.1 area element da 739

15.5.2 surface integrals 743

15.6 volumes and volume integrals 748

15.6.1 volume element dv 749

15.6.2 volume integrals 752

chapter 15 review 755

16 scalar and vector field theory 757

16.1 introduction 757

16.2 preliminaries 758

16.2.1 topological considerations 758

16.2.2 scalar and vector fields 758

16.3 divergence 761

16.4 gradient 766

16.5 curl 774

16.6 combinations; laplacian 778

16.7 non-cartesian systems; div, grad, curl, and laplacian (optional) 782

16.7.1 cylindrical coordinates 783

16.7.2 spherical coordinates 786

16.8 divergence theorem 792

16.8.1 divergence theorem 792

16.8.2 two-dimensional case 802

16.8.3 non-cartesian coordinates (optional) 803

16.9 stokes's theorem 810

16.9.1 line integrals 814

16.9.2 stokes's theorem 814

16.9.3 green's theorem 818

16.9.4 non-cartesian coordinates (optional) 820

16.10 lrrotational fields 826

16.10.1 irrotational fields 826

16.10.2 non-cartesian coordinates 835

chapter 16 review 841

part iv: fourier methods and partial differential equations

17 fourier series, fourier integral, fourier transform 844

17.1 introduction 844

17.2 even, odd, and periodic functions 846

17.3 fourier series of a periodic function 850

17.3.1 fourier series 850

17.3.2 euler's formulas 857

17.3.3 applications 859

17.3.4 complex exponential form for fourier series 864

17.4 half- and quarter-range expansions 869

17.5 manipulation of fourier series (optional) 873

17.6 vector space approach 881

17.7 the sturm-liouville theory 887

17.7.1 sturm-liouville problem 887

17.7.2 lagrange identity and proofs (optional) 897

17.8 periodic and singular sturm-liouville problems 905

17.9 fourier integral 913

17.10 fourier transform 919

17.10.1 transition from fourier integral to fourier transform 920

17.10.2 properties and applications 922

17.11 fourier cosine and sine transforms, and passage

from fourier integral to laplace transform (optional) 934

17.11.1 cosine and sine transforms 934

17.11.2 passage from fourier integral to laplace transform 937

chapter 17 review 940

18 diffusion equation 943

18.1 introduction 943

18.2 preliminary concepts 944

18.2.1 definitions 944

18.2.2 second-order linear equations and their classification 946

18.2.3 diffusion equation and modeling '948

18.3 separation of variables 954

18.3.1 the method of separation of variables 954

18.3.2 verification of solution (optional) 964

18.3.3 use of sturm-liouville theory (optional) 965

18.4 fourier and laplace transforms (optional) 981

18.5 the method of images (optional) 992

18.5.1 illustration of the method 992

18.5.2 mathematical basis for the method 994

18.6 numerical solution 998

18.6.1 the finite-difference method 998

18.6.2 implicit methods: crank-nicolson, with iterative solution (optional) 1005

chapter 18 review 1015

19 wave equation 1017

19.1 introduction 1017

19.2 separation of variables; vibrating string 1023

19.2.1 solution by separation of variables 1023

19.2.2 traveling wave interpretation 1027

19.2.3 using sturm-liouville theory (optional) 1029

19.3 separation of variables; vibrating membrane 1035

19.4 vibrating string; d'alembert's solution 1043

19.4.1 d'alembert's solution 1043

19.4.2 use of images 1049

19.4.3 solution by integral transforms (optional) 1051

chapter 19 review 1055

20 laplace equation 1058

20.1 introduction 1058

20.2 separation of variables; cartesian coordinates 1059

20.3 separation of variables; non-cartesian coordinates 1070

20.3.1 plane polar coordinates 1070

20.3.2 cylindrical coordinates (optional) 1077

20.3.3 spherical coordinates (optional) 1081

20.4 fourier transform (optional) 1088

20.5 numerical solution 1092

20.5.1 rectangular domains 1092

20.5.2 nonrectangular domains 1097

20.5.3 iterative algorithms (optional) 1100

chapter 20 review 1106

part v: complex variable theory

21 functions of a complex variable 1108

21.1 introduction 1108

21.2 complex numbers and the complex plane 1109

21.3 elementary functions 1114

21.3.1 preliminary ideas 1114

21.3.2 exponential function 1116

21.3.3 trigonometric and hyperbolic functions 1118

21.3.4 application of complex numbers to integration and the

solution of differential equations 1120

21.4 polar form, additional elementary functions, and multi-valuedness 1125

21.4.1 polar form 1125

21.4.2 integral powers of z and de moivre's formula 1127

21.4.3 fractional powers 1128

21.4.4 the logarithm ofz 1129

21.4.5 general powers ofz 1130

21.4.6 obtaining single-valued functions by branch cuts 1131

21.4.7 more about branch cuts (optional) 1132

21.5 the differential calculus and analyticity 1136

chapter 21 review 1148

22 conformal mapping 1150

22.1 introduction 1150

22.2 the idea behind conformal mapping 1150

22.3 the bilinear transformation 1158

22.4 additional mappings and applications 1166

22.5 more general boundary conditions 1170

22.6 applications to fluid mechanics 1174

chapter 22 review 1180

23 the complex integral calculus 1182

23.1 introduction 1182

23.2 complex integration 1182

23.2.1 definition and properties 1182

23.2.2 bounds 1186

23.3 cauchy's theorem 1189

23.4 fundamental theorem of the complex integral calculus 1195

23.5 cauchy integral formula 1199

chapter 23 review 1207

24 taylor series, laurent series, and the residue theorem 1209

24.1 introduction 1209

24.2 complex series and taylor series 1209

24.2.1 complex series 1209

24.2.2 taylor series 1214

24.3 laurent series 1225

24.4 classification of singularities 1234

24.5 residue theorem 1240

24.5.1 residue theorem 1240

24.5.2 calculating residues 1242

24.5.3 applications of the residue theorem 1243

chapter 24 review 1258

references 1260

appendices

a review of partial fraction expansions 1263

b existence and uniqueness of solutions of systems of

linear algebraic equations 1267

c table of laplace transforms 1271

d table of fourier transforms 1274

e table of fourier cosine and sine transforms 1276

f table of conformal maps 1278

answers to selected exercises 1282

index 1315


已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

Advanced engineering mathematics = 高等工程数学 / 2nd ed.
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon