Plant hormone signaling /

副标题:无

作   者:edited by Peter Hedden & Stephen Thomas.

分类号:

ISBN:9781405138871

微信扫一扫,移动浏览光盘

简介

Plant hormones--signaling molecules--were first discovered in the 18th and 19th centuries, but their chemical identification progressed only slowly until the final decades of the 20th. Enough information is now available that a review of the current status was deemed appropriate. Biological scientists from around the world detail several specific hormones, their function, and what is yet to learn about them. They also discuss hormone distribution and transport, reproductive development, and seed development and germination. Annotation 漏2006 Book News, Inc., Portland, OR (booknews.com)

目录

Contents 7
Contributors 15
Preface 17
1 Abscisic acid synthesis, metabolism and signal transduction 23
1.1 Introduction 23
1.2 Biosynthesis and catabolism pathways 24
1.2.1 Main early steps of ABA biosynthesis 24
1.2.2 Epoxy-carotenoid cleavage 26
1.2.3 The conversion of xanthoxin to ABA 28
1.2.4 ABA catabolism 28
1.3 Regulation of ABA synthesis and metabolism 29
1.3.1 Developmental regulation 29
1.3.1.1 Vegetative tissues 29
1.3.1.2 Reproductive organs 30
1.3.2 Regulation in response to abiotic stresses 31
1.3.3 Regulation by endogenous signals and factors 32
1.4 ABA signaling in seed maturation processes: proteolysis and combinatorial protein interactions 34
1.5 Stress responses in vegetative tissues: the five major nexuses 37
1.5.1 ABA recognition sites and the search for the receptors 37
1.5.2 Transcriptional network as the readout 39
1.5.3 RNA metabolism 39
1.5.4 Protein phosphatases 2C 41
1.5.5 Sucrose non-fermenting-related kinases 41
1.6 ABA signaling in guard cells: simple movements controlled by complex mechanisms 44
1.7 ABA as antagonizing signal to light in stomatal movement 45
1.8 Concluding remarks 46
Acknowledgements 47
References 48
2 Auxin metabolism and signaling 59
2.1 Introduction 59
2.2 Auxin metabolism 59
2.2.1 Indole-3-acetic acid biosynthesis 59
2.2.1.1 The tryptophan-independent pathway 59
2.2.1.2 IAA biosynthesis from tryptophan 62
2.2.2 IAA conjugates in plants 64
2.2.2.1 IAA-peptide conjugates 64
2.2.2.2 Amino acid conjugates 65
2.2.2.3 Amide conjugate hydrolysis 65
2.2.2.4 Ester conjugates 66
2.2.3 IAA degradation 68
2.3 Auxin signaling 68
2.3.1 Auxin-responsive genes 68
2.3.2 Auxin response factors 69
2.3.3 Regulation of auxin response by the SCFTIR1 ubiquitin\u2013ligase 73
2.3.4 Regulation of SCFTIR1 activity 75
2.3.5 Identification of an auxin receptor 77
2.4 Conclusions and future perspectives 80
Acknowledgements 81
References 81
3 Integration of brassinosteroid biosynthesis and signaling 89
3.1 Introduction 89
3.2 Metabolism 89
3.2.1 Biosynthesis 89
3.2.1.1 DET2 91
3.2.1.2 SAX1 94
3.2.1.3 DWF4 94
3.2.1.4 CPD 95
3.2.1.5 ROT3 and CYP90D1 95
3.2.1.6 CYP85A1 and CYP85A2 96
3.2.1.7 Other biosynthetic functions 96
3.2.2 Inactivation 97
3.2.2.1 BAS1 97
3.2.2.2 CHI2/SHK1/SOB7 98
3.2.2.3 UGT73C5 99
3.2.2.4 BNST3 and BNST4 99
3.2.3 Functional aspects of BR metabolism 99
3.2.3.1 Regulation of biosynthetic genes 99
3.2.3.2 Regulation of BR-inactivating genes 100
3.2.3.3 Conservation of BR synthesis in higher plants 101
3.3 Signal transduction 102
3.3.1 BRI1 and BAK1 102
3.3.2 BIN2 and BSU1 103
3.3.3 BZR1 and BZR2/BES1 104
3.3.4 BIM1 104
3.3.5 Signaling mechanism and other putative components 105
3.4 Future prospectives 106
3.4.1 Metabolism 106
3.4.2 Signal transduction 108
3.4.3 Crops 108
Acknowledgements 109
References 109
4 Cytokinin metabolism and signal transduction 115
4.1 Introduction 115
4.2 Cytokinin metabolism 115
4.2.1 Cytokinin biosynthesis 116
4.2.2 Cytokinin interconversion and conjugation 119
4.2.3 Cytokinin catabolism 120
4.3 Cytokinin signal transduction 123
4.3.1 Cytokinin signal perception 123
4.3.2 Cytokinin signal transduction 127
4.4 Conclusions 139
References 140
5 Ethylene biosynthesis and signaling: a puzzle yet to be completed 147
5.1 Introduction 147
5.2 Ethylene biosynthesis 148
5.2.1 ACC synthase 149
5.2.2 ACC oxidase 152
5.3 Ethylene signal transduction 153
5.4 A complex network 159
Acknowledgements 161
References 161
6 Gibberellin metabolism and signal transduction 169
6.1 Introduction 169
6.2 The gibberellin metabolic pathway 170
6.2.1 Biosynthesis of bioactive GAs 170
6.2.2 GA deactivation 172
6.3 Genes of GA biosynthesis and their regulation 173
6.3.1 Developmental regulation 173
6.3.2 Hormonal regulation 176
6.3.3 Environmental regulation 176
6.4 The gibberellin signal transduction pathway 179
6.4.1 The gibberellin receptor 181
6.4.2 DELLA proteins act as repressors of GA signaling 181
6.4.3 GAs promote rapid degradation of DELLA proteins 183
6.4.4 SCFSLY/GID-mediated degradation of DELLA proteins 184
6.4.5 The role of GID1 in DELLA degradation 186
6.4.6 Additional GA-signaling components 186
6.4.6.1 A role for O-linked N-acetylglucosamine transferases in GA signaling 186
6.4.6.2 DWARF1 and PHOR1, possible positive regulators of GA signaling 187
6.5 Downstream transcriptional events induced by GAs 188
6.5.1 GAMYBs 189
6.5.2 Homoeostatic regulation of GA metabolism 191
6.6 Sites of GA signaling 192
6.6.1 Germinating seeds 192
6.6.2 Stems 193
6.6.3 Flower initiation and development 193
6.6.4 The Arabidopsis root 194
6.7 Conclusions 196
Acknowledgements 198
References 198
7 Oxylipins: biosynthesis, signal transduction and action 207
7.1 Introduction 207
7.2 a-Dioxygenase, phytoprostanes and electrophile compounds 209
7.2.1 a-Dioxygenase 209
7.2.2 Phytoprostanes and electrophile compounds 209
7.3 The LOX pathway 211
7.3.1 The LOX 212
7.3.2 HPOT/HPOD: the branch point in the LOX pathway 213
7.3.3 The AOS branch: jasmonate biosynthesis 214
7.3.3.1 The AOS 214
7.3.3.2 The allene oxide cyclase 215
7.3.3.3 OPR3 216
7.3.3.4 B-oxidation in JA biosynthesis 216
7.3.3.5 Jasmonate metabolites 219
7.4 Mutants in JA biosynthesis and in JA signaling 221
7.4.1 Mutants in JA biosynthesis 221
7.4.2 Mutants in JA signaling 223
7.4.3 Proteasome-mediated JA signaling 225
7.5 JA, OPDA and related compounds in plant-defense reactions 227
7.5.1 Plant-microbe interactions 227
7.5.1.1 Symbiontic interactions 227
7.5.1.2 Plant pathogen interactions 228
7.5.1.3 Cross-talk between JA, SA, ethylene and ABA 229
7.5.2 The wound-response pathway 230
7.5.3 Direct and indirect defense 233
7.6 JA in development 235
7.6.1 Seedling development and root growth 235
7.6.2 Tuber formation 236
7.6.3 Flower formation 236
7.6.4 Senescence 237
7.7 Concluding remarks 238
Acknowledgements 239
References 239
8 Salicylic acid 251
8.1 Introduction 251
8.2 Biosynthesis and metabolism of SA 252
8.2.1 SA biosynthesis via the phenylpropanoid pathway 252
8.2.2 SA biosynthesis through the isochorismate pathway 255
8.2.3 Relative contribution of the isochorismate and BA pathway 256
8.2.4 Regulation and localization of SA biosynthesis 256
8.2.5 Metabolism of SA 257
8.2.6 Biosynthesis of MeSA 258
8.3 Signal transduction and mode of action 259
8.3.1 SA-binding sites 260
8.3.2 SA and signal transduction mediated by MAP kinases 261
8.3.3 SA and the central role of NPR1 262
8.3.4 SA and other regulatory proteins 265
8.3.5 SA and the mobile signal 265
8.3.6 SA and global gene expression 266
8.3.7 SA and virus resistance 268
8.4 Conclusions 268
References 269
9 Hormone distribution and transport 279
9.1 Concepts and definitions 279
9.2 Auxins: distribution and transport 279
9.2.1 Auxin distribution: old views and new developments 279
9.2.2 Auxin biosynthesis: not restricted to the shoot anymore 280
9.3 Auxin transport 282
9.3.1 Mass-flow-dependent distribution of auxin 282
9.3.2 Polar auxin transport 282
9.3.2.1 Physiological aspects 282
9.3.2.2 Auxin transporters 285
9.3.2.3 Regulation of the carriers 287
9.3.3 Conclusion: a joint effort required for auxin transport? 291
9.4 GAs: distribution and transport 291
9.4.1 Seeds and fruits 292
9.4.2 Vegetative tissues 292
9.4.2.1 Grafting studies 292
9.4.2.2 Can mature shoot tissue synthesise GAs? 294
9.4.2.3 Monocotyledonous species 296
9.4.3 Conclusion: some GAs can undergo long-distance transport, at least in some circumstances 299
9.5 BRs: distribution and transport 299
9.5.1 BR distribution 300
9.5.2 BR transport 300
9.5.2.1 Exogenous BRs 300
9.5.2.2 Endogenous BRs: grafting studies 301
9.5.2.3 BR transport within the shoot? 303
9.5.2.4 \u201cShort-distance\u201d BR transport? 304
9.5.3 Conclusion: endogenous BRs do not undergo long-distance transport 305
9.6 General discussion 305
Acknowledgements 306
References 306
10 Reproductive development 315
10.1 Introduction 315
10.2 Flowering time 315
10.2.1 Gibberellins 316
10.2.2 Brassinosteroids 317
10.2.3 Auxins, cytokinins and ethylene 317
10.2.4 Abscisic acid 318
10.2.5 Salicylic acid and the stress-activated transition to flowering 318
10.3 Flower development 319
10.4 Early fruit development 321
10.4.1 Gibberellins 321
10.4.2 Auxin 322
10.4.3 Polyamines 323
10.5 Fruit maturation 324
10.5.1 Ethylene 324
10.5.2 Auxin 325
10.5.3 BRs and ABA 325
10.5.4 Salicylic acid 326
10.6 Conclusions 326
References 326
11 Seed development and germination 333
11.1 Introduction 333
11.2 Hormonal control of seed development 333
11.2.1 Developmental and physiological phases in seed development 334
11.2.2 Developmental regulators for seed development 335
11.2.3 Regulators of ABA responses in the seed 338
11.2.4 ABA and GA metabolism genes during seed development 339
11.2.5 Regulation of balancing ABA and GA levels during seed development 340
11.2.6 Regulation of ABA and GA action during seed development 341
11.3 Hormonal control of seed germination and post-germinative growth 341
11.3.1 Regulation of GA levels in imbibed seeds 341
11.3.1.1 Light-regulation of GA biosynthesis 342
11.3.1.2 Temperature-regulation of GA biosynthesis 343
11.3.1.3 GA response components in germinating seeds 344
11.3.2 Regulation of ABA levels in imbibed seeds 345
11.3.2.1 De novo ABA biosynthesis and catabolism are involved in regulation of ABA levels 345
11.3.2.2 Light, high temperature, and GA regulation of ABA metabolism 345
11.3.3 Sites of GA biosynthesis and response in imbibed seeds 346
11.3.4 GA and ABA action in the cereal aleurone 349
11.3.4.1 GA and ABA perception 349
11.3.4.2 Crosstalk between GA and ABA action 350
11.3.5 Other hormones: actions of ethylene and brassinosteroids during seed germination 351
11.3.5.1 Ethylene 351
11.3.5.2 Brassinosteroids 352
11.4 Conclusions and perspectives 353
References 353
Index 361

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

Plant hormone signaling /
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon