简介
Foreword from Arogyaswami Paulraj, Professor (Emeritus), Stanford University (USA)
* The first book to show how MIMO principles can be implemented in today's mobile broadband networks and components * Explains and solves some of the practical difficulties that arise in designing and implementing MIMO systems. * Both theory and implementation sections are written in the context of the most recent standards: IEEE 802.11n (WiFi); IEEE 802.16 (WIMAX); 4G networks (3GPP/3GPP2, LTE).
目录
Table Of Contents:
Foreword xi
Preface xiii
About the Editors, Authors and Contributors xv
Introduction xvii
Part I Mimo Fundamentals
Chapter 1 A Short Introduction to MIMO Information Theory 3(24)
1.1 The Shannon-Wiener Legacy: From 1948 to 2008 3(2)
1.2 Preliminaries 5(2)
1.3 Information Theoretic Aspects 7(7)
1.3.1 Information Theoretic Metrics 7(2)
1.3.2 Analytical Expressions 9(5)
1.4 Signal Processing Aspects 14(10)
1.4.1 The SIMO Case 14(4)
1.4.2 The MIMO Case 18(6)
1.5 Wiener vs. Shannon: An Ever Closer Union 24(3)
Chapter 2 MIMO Propagation and Channel Modeling 27(28)
2.1 Introduction 27(2)
2.2 Model Classification 29(3)
2.3 Parameters of the MIMO Radio Channel 32(2)
2.4 CSI and Channel Randomness 34(2)
2.5 What Kind of Correlation in MIMO? 36(2)
2.6 MIMO Measurements 38(4)
2.6.1 Characterization of Multipath Components 38(1)
2.6.2 Diffuse Multipath 38(1)
2.6.3 Clusters 39(1)
2.6.4 Normalization 40(1)
2.6.5 Which Channel Has Actually Been Measured? 41(1)
2.6.6 Rich Multipath or High Receive Power? 41(1)
2.6.7 Measurement Summary 41(1)
2.7 What Makes a Good Channel Model? 42(2)
2.7.1 Requirements and Validation 42(1)
2.7.2 Metrics 42(1)
2.7.3 Polarization 43(1)
2.8 Examples of MIMO Radio Channel Models 44(9)
2.8.1 WINNER II 44(4)
2.8.2 An Analytical MIMO Channel Model (Weichselberger) 48(3)
2.8.3 The Random Cluster Model 51(2)
2.9 Some Conclusions 53(1)
Acknowledgment 54(1)
Chapter 3 Space Time Codes and MIMO Transmission 55(42)
3.1 Introduction 55(1)
3.2 Diversity and Multiplexing Gain 56(8)
3.2.1 Diversity 56(3)
3.2.2 Multiplexing 59(3)
3.2.3 Diversity-multiplexing Trade-off 62(2)
3.3 Theory of Space-time Coding 64(5)
3.3.1 Space-time Codes as a General Model of MIMO Transmission 64(1)
3.3.2 Diversity of Space-time Codes 65(3)
3.3.3 Design Criteria 68(1)
3.4 Space-time Codes 69(8)
3.4.1 STTC 70(3)
3.4.2 STBC 73(4)
3.5 Spatial Multiplexing 77(10)
3.5.1 V-BLAST 78(1)
3.5.2 D-BLAST 79(1)
3.5.3 Detection of Spatial Multiplexing 80(3)
3.5.4 Transmit Diversity of Coded Spatial Multiplexing 83(4)
3.6 Precoding 87(6)
3.6.1 Adaptive Transmission using the S V D 87(1)
3.6.2 Codebook-based Precoding 88(1)
3.6.3 Generalized Precoding 89(4)
3.7 MIMO in Current and Emerging Standards 93(1)
3.8 Summary 94(3)
Chapter 4 Interference Functions 鈥?A Mathematical Framework for MIMO Interference Networks 97(28)
4.1 Multiuser Channels 98(11)
4.1.1 Spatial Interference Filtering 99(3)
4.1.2 Capacity Region 102(3)
4.1.3 Duality 105(3)
4.1.4 Network MIMO 108(1)
4.2 A General Framework for Optimizing Interference Networks 109(7)
4.2.1 Interference Functions 110(1)
4.2.2 Quality of Service Region 110(2)
4.2.3 Power Control 112(4)
4.3 Joint Interference Mitigation and Resource Allocation 116(5)
4.3.1 Adaptive Transmit and Receive Strategies 116(2)
4.3.2 Optimization under Individual QoS Constraints 118(2)
4.3.3 Max-MM Balancing 120(1)
4.4 Implementation Aspects 121(4)
Part II Implementation
Chapter 5 Advanced Transmitter and Receiver Design 125(50)
5.1 Introduction 125(7)
5.1.1 Convolutional Codes and BCJR Decoding 125(5)
5.1.2 Turbo Codes and Turbo Decoding 130(2)
5.1.3 The Turbo Principle 132(1)
5.2 Turbo Equalization 132(17)
5.2.1 Transmission Scheme 133(1)
5.2.2 Separation of Equalization and Decoding 134(1)
5.2.3 SI-SO Equalization and Demapping 134(4)
5.2.4 SI-SO Decoding 138(3)
5.2.5 Reduced Complexity SI-SO Equalization 141(5)
5.2.6 Simulations 146(3)
5.3 Turbo Equalization on Frequency-Selective MIMO Channels 149(5)
5.3.1 Transmission Scheme 149(1)
5.3.2 Application of the Turbo Equalization Framework 150(1)
5.3.3 Simulations 151(3)
5.4 Turbo Synchronization 154(7)
5.4.1 Transmission Scheme 154(2)
5.4.2 Separation of Synchronization and Decoding 156(1)
5.4.3 Approaches to Synchronization 157(2)
5.4.4 Code-Aided Synchronization with the EM Algorithm 159(2)
5.4.5 Turbo Synchronization and Decoding 161(1)
5.5 Turbo Synchronization on Frequency-Selective MIMO Channels 161(14)
5.5.1 Transmission Scheme 162(2)
5.5.2 Data-Aided Synchronization 164(1)
5.5.3 Code-Aided Synchronization with the EM Algorithm 165(2)
5.5.4 Modifications of the EM Algorithm to Reduce the Bias 167(1)
5.5.5 Turbo Synchronization and Decoding 168(1)
5.5.6 Simulations 169(6)
Chapter 6 Implementing Scalable List Detectors for MIMO-SDM in LTE 175(20)
6.1 Introduction 175(3)
6.2 Radius-Based Detector Algorithm 178(2)
6.3 Mapping of the Radius-Based Detector 180(8)
6.3.1 Direct Implementation 182(1)
6.3.2 Parallelism Exploitation and Simplifications 182(4)
6.3.3 Overall Performance and Scalability 186(2)
6.4 SSFE Detector 188(5)
6.4.1 SSFE: An Implementation-Friendly Detector 188(3)
6.4.2 Soft-Output Extension 191(1)
6.4.3 Corresponding Processor Architecture 192(1)
6.5 Conclusions 193(2)
Chapter 7 IEEE 802.11n Implementation 195(34)
7.1 IEEE 802.11n PHY Layer Introduction 195(1)
7.2 IEEE 802.11n Transmitter Part 195(7)
7.2.1 PLCP and Frame Format 196(1)
7.2.2 Processing 196(6)
7.3 IEEE 802.11n Receiver Part 202(21)
7.3.1 Signal Detection 203(1)
7.3.2 Timing Recovery 204(6)
7.3.3 Carrier Frequency Offset (CFO) Estimation 210(3)
7.3.4 Channel Coefficients Estimation 213(1)
7.3.5 Fractional Time Delay (FTD) Estimation and Post-FFT Phase Tracking 214(5)
7.3.6 MIMO Decoder 219(4)
7.4 Simulation Results 223(5)
7.4.1 Without STBC 223(3)
7.4.2 With STBC 226(2)
7.5 Conclusion 228(1)
Chapter 8 WiMAX Implementation 229(14)
8.1 Introduction 229(1)
8.2 Existing Schemes in IEEE 802.16e 229(4)
8.2.1 Description 229(2)
8.2.2 Simulated Performance 231(2)
8.2.3 Requirements on Signaling and Measurements 233(1)
8.2.4 Requirements on Architecture and Protocols 233(1)
8.3 MIMO Candidates for IEEE 802.16m 233(2)
8.3.1 Description 233(2)
8.3.2 Concluding Remarks 235(1)
8.4 UL-MIMO Schemes in WiMAX Systems 235(1)
8.4.1 Introduction 235(1)
8.5 Cyclic Delay Diversity (CDD) 236(1)
8.6 Tile-Switched Diversity (TSD) 236(2)
8.7 Performance 238(2)
8.8 Potential Impacts on Architecture 240(1)
8.9 Conclusions 241(2)
Chapter 9 LTE and LTE-Advanced 243(24)
9.1 Transmission Structure 245(2)
9.1.1 LTE Downlink 245(2)
9.1.2 LTE Uplink 247(1)
9.2 LTE MIMO Schemes 247(10)
9.2.1 MIMO System Model and LTE Feedback Scheme 249(1)
9.2.2 Transmit Diversity Mode 249(2)
9.2.3 Spatial Multiplexing Modes 251(4)
9.2.4 Single-Mode Beamforming Modes 255(1)
9.2.5 Multiuser MIMO Mode 255(1)
9.2.6 LTE Reference Signals 256(1)
9.3 LTE-Advanced MIMO Schemes 257(10)
9.3.1 LTE-A Transmission Structure 258(1)
9.3.2 Transmit Diversity 258(1)
9.3.3 Spatial Multiplexing Modes 259(1)
9.3.4 Multiuser MIMO Mode 260(3)
9.3.5 Coordinated MultiPoint Processing 263(1)
9.3.6 LTE-A Reference Signals 264(3)
Chapter 10 Multiple Antenna Terminals 267(32)
10.1 Size-Performance Trade Off 267(5)
10.2 Performance of Compact Design 272(7)
10.2.1 Dual-Antenna Prototype 272(1)
10.2.2 S-parameters and Envelope Correlation 273(2)
10.2.3 Diversity and Capacity Performance 275(2)
10.2.4 Effect of User Interaction 277(2)
10.3 Compact Design Techniques 鈥?Antenna Decoupling 279(9)
10.3.1 Circuit Level Decoupling 280(3)
10.3.2 Antenna Level Decoupling 283(5)
10.4 Compact Design Techniques 鈥?Antenna/Channel Matching 288(6)
10.4.1 Circuit Level Matching 289(4)
10.4.2 Antenna Level Matching 293(1)
10.5 Related Issues and Future Outlook 294(2)
10.5.1 Correlation from S-parameters 294(1)
10.5.2 Over-the-Air Performance 294(2)
10.5.3 Future Outlook 296(1)
10.6 Conclusions 296(1)
10.7 Acknowledgment 297(2)
Chapter 11 Conclusion: MIMO Roadmaps 299(24)
11.1 Systems and Roadmaps 299(19)
11.1.1 Toward 4G Radio Systems 299(8)
11.1.2 Advanced MIMO Techniques Submitted in 4G 307(9)
11.1.3 Other Systems 316(2)
11.2 A Bird's Eye View on Current and Future Prospects for MIMO 318(5)
List of Symbols 323(2)
List of Acronyms 325(6)
References 331(26)
Index 357
Foreword xi
Preface xiii
About the Editors, Authors and Contributors xv
Introduction xvii
Part I Mimo Fundamentals
Chapter 1 A Short Introduction to MIMO Information Theory 3(24)
1.1 The Shannon-Wiener Legacy: From 1948 to 2008 3(2)
1.2 Preliminaries 5(2)
1.3 Information Theoretic Aspects 7(7)
1.3.1 Information Theoretic Metrics 7(2)
1.3.2 Analytical Expressions 9(5)
1.4 Signal Processing Aspects 14(10)
1.4.1 The SIMO Case 14(4)
1.4.2 The MIMO Case 18(6)
1.5 Wiener vs. Shannon: An Ever Closer Union 24(3)
Chapter 2 MIMO Propagation and Channel Modeling 27(28)
2.1 Introduction 27(2)
2.2 Model Classification 29(3)
2.3 Parameters of the MIMO Radio Channel 32(2)
2.4 CSI and Channel Randomness 34(2)
2.5 What Kind of Correlation in MIMO? 36(2)
2.6 MIMO Measurements 38(4)
2.6.1 Characterization of Multipath Components 38(1)
2.6.2 Diffuse Multipath 38(1)
2.6.3 Clusters 39(1)
2.6.4 Normalization 40(1)
2.6.5 Which Channel Has Actually Been Measured? 41(1)
2.6.6 Rich Multipath or High Receive Power? 41(1)
2.6.7 Measurement Summary 41(1)
2.7 What Makes a Good Channel Model? 42(2)
2.7.1 Requirements and Validation 42(1)
2.7.2 Metrics 42(1)
2.7.3 Polarization 43(1)
2.8 Examples of MIMO Radio Channel Models 44(9)
2.8.1 WINNER II 44(4)
2.8.2 An Analytical MIMO Channel Model (Weichselberger) 48(3)
2.8.3 The Random Cluster Model 51(2)
2.9 Some Conclusions 53(1)
Acknowledgment 54(1)
Chapter 3 Space Time Codes and MIMO Transmission 55(42)
3.1 Introduction 55(1)
3.2 Diversity and Multiplexing Gain 56(8)
3.2.1 Diversity 56(3)
3.2.2 Multiplexing 59(3)
3.2.3 Diversity-multiplexing Trade-off 62(2)
3.3 Theory of Space-time Coding 64(5)
3.3.1 Space-time Codes as a General Model of MIMO Transmission 64(1)
3.3.2 Diversity of Space-time Codes 65(3)
3.3.3 Design Criteria 68(1)
3.4 Space-time Codes 69(8)
3.4.1 STTC 70(3)
3.4.2 STBC 73(4)
3.5 Spatial Multiplexing 77(10)
3.5.1 V-BLAST 78(1)
3.5.2 D-BLAST 79(1)
3.5.3 Detection of Spatial Multiplexing 80(3)
3.5.4 Transmit Diversity of Coded Spatial Multiplexing 83(4)
3.6 Precoding 87(6)
3.6.1 Adaptive Transmission using the S V D 87(1)
3.6.2 Codebook-based Precoding 88(1)
3.6.3 Generalized Precoding 89(4)
3.7 MIMO in Current and Emerging Standards 93(1)
3.8 Summary 94(3)
Chapter 4 Interference Functions 鈥?A Mathematical Framework for MIMO Interference Networks 97(28)
4.1 Multiuser Channels 98(11)
4.1.1 Spatial Interference Filtering 99(3)
4.1.2 Capacity Region 102(3)
4.1.3 Duality 105(3)
4.1.4 Network MIMO 108(1)
4.2 A General Framework for Optimizing Interference Networks 109(7)
4.2.1 Interference Functions 110(1)
4.2.2 Quality of Service Region 110(2)
4.2.3 Power Control 112(4)
4.3 Joint Interference Mitigation and Resource Allocation 116(5)
4.3.1 Adaptive Transmit and Receive Strategies 116(2)
4.3.2 Optimization under Individual QoS Constraints 118(2)
4.3.3 Max-MM Balancing 120(1)
4.4 Implementation Aspects 121(4)
Part II Implementation
Chapter 5 Advanced Transmitter and Receiver Design 125(50)
5.1 Introduction 125(7)
5.1.1 Convolutional Codes and BCJR Decoding 125(5)
5.1.2 Turbo Codes and Turbo Decoding 130(2)
5.1.3 The Turbo Principle 132(1)
5.2 Turbo Equalization 132(17)
5.2.1 Transmission Scheme 133(1)
5.2.2 Separation of Equalization and Decoding 134(1)
5.2.3 SI-SO Equalization and Demapping 134(4)
5.2.4 SI-SO Decoding 138(3)
5.2.5 Reduced Complexity SI-SO Equalization 141(5)
5.2.6 Simulations 146(3)
5.3 Turbo Equalization on Frequency-Selective MIMO Channels 149(5)
5.3.1 Transmission Scheme 149(1)
5.3.2 Application of the Turbo Equalization Framework 150(1)
5.3.3 Simulations 151(3)
5.4 Turbo Synchronization 154(7)
5.4.1 Transmission Scheme 154(2)
5.4.2 Separation of Synchronization and Decoding 156(1)
5.4.3 Approaches to Synchronization 157(2)
5.4.4 Code-Aided Synchronization with the EM Algorithm 159(2)
5.4.5 Turbo Synchronization and Decoding 161(1)
5.5 Turbo Synchronization on Frequency-Selective MIMO Channels 161(14)
5.5.1 Transmission Scheme 162(2)
5.5.2 Data-Aided Synchronization 164(1)
5.5.3 Code-Aided Synchronization with the EM Algorithm 165(2)
5.5.4 Modifications of the EM Algorithm to Reduce the Bias 167(1)
5.5.5 Turbo Synchronization and Decoding 168(1)
5.5.6 Simulations 169(6)
Chapter 6 Implementing Scalable List Detectors for MIMO-SDM in LTE 175(20)
6.1 Introduction 175(3)
6.2 Radius-Based Detector Algorithm 178(2)
6.3 Mapping of the Radius-Based Detector 180(8)
6.3.1 Direct Implementation 182(1)
6.3.2 Parallelism Exploitation and Simplifications 182(4)
6.3.3 Overall Performance and Scalability 186(2)
6.4 SSFE Detector 188(5)
6.4.1 SSFE: An Implementation-Friendly Detector 188(3)
6.4.2 Soft-Output Extension 191(1)
6.4.3 Corresponding Processor Architecture 192(1)
6.5 Conclusions 193(2)
Chapter 7 IEEE 802.11n Implementation 195(34)
7.1 IEEE 802.11n PHY Layer Introduction 195(1)
7.2 IEEE 802.11n Transmitter Part 195(7)
7.2.1 PLCP and Frame Format 196(1)
7.2.2 Processing 196(6)
7.3 IEEE 802.11n Receiver Part 202(21)
7.3.1 Signal Detection 203(1)
7.3.2 Timing Recovery 204(6)
7.3.3 Carrier Frequency Offset (CFO) Estimation 210(3)
7.3.4 Channel Coefficients Estimation 213(1)
7.3.5 Fractional Time Delay (FTD) Estimation and Post-FFT Phase Tracking 214(5)
7.3.6 MIMO Decoder 219(4)
7.4 Simulation Results 223(5)
7.4.1 Without STBC 223(3)
7.4.2 With STBC 226(2)
7.5 Conclusion 228(1)
Chapter 8 WiMAX Implementation 229(14)
8.1 Introduction 229(1)
8.2 Existing Schemes in IEEE 802.16e 229(4)
8.2.1 Description 229(2)
8.2.2 Simulated Performance 231(2)
8.2.3 Requirements on Signaling and Measurements 233(1)
8.2.4 Requirements on Architecture and Protocols 233(1)
8.3 MIMO Candidates for IEEE 802.16m 233(2)
8.3.1 Description 233(2)
8.3.2 Concluding Remarks 235(1)
8.4 UL-MIMO Schemes in WiMAX Systems 235(1)
8.4.1 Introduction 235(1)
8.5 Cyclic Delay Diversity (CDD) 236(1)
8.6 Tile-Switched Diversity (TSD) 236(2)
8.7 Performance 238(2)
8.8 Potential Impacts on Architecture 240(1)
8.9 Conclusions 241(2)
Chapter 9 LTE and LTE-Advanced 243(24)
9.1 Transmission Structure 245(2)
9.1.1 LTE Downlink 245(2)
9.1.2 LTE Uplink 247(1)
9.2 LTE MIMO Schemes 247(10)
9.2.1 MIMO System Model and LTE Feedback Scheme 249(1)
9.2.2 Transmit Diversity Mode 249(2)
9.2.3 Spatial Multiplexing Modes 251(4)
9.2.4 Single-Mode Beamforming Modes 255(1)
9.2.5 Multiuser MIMO Mode 255(1)
9.2.6 LTE Reference Signals 256(1)
9.3 LTE-Advanced MIMO Schemes 257(10)
9.3.1 LTE-A Transmission Structure 258(1)
9.3.2 Transmit Diversity 258(1)
9.3.3 Spatial Multiplexing Modes 259(1)
9.3.4 Multiuser MIMO Mode 260(3)
9.3.5 Coordinated MultiPoint Processing 263(1)
9.3.6 LTE-A Reference Signals 264(3)
Chapter 10 Multiple Antenna Terminals 267(32)
10.1 Size-Performance Trade Off 267(5)
10.2 Performance of Compact Design 272(7)
10.2.1 Dual-Antenna Prototype 272(1)
10.2.2 S-parameters and Envelope Correlation 273(2)
10.2.3 Diversity and Capacity Performance 275(2)
10.2.4 Effect of User Interaction 277(2)
10.3 Compact Design Techniques 鈥?Antenna Decoupling 279(9)
10.3.1 Circuit Level Decoupling 280(3)
10.3.2 Antenna Level Decoupling 283(5)
10.4 Compact Design Techniques 鈥?Antenna/Channel Matching 288(6)
10.4.1 Circuit Level Matching 289(4)
10.4.2 Antenna Level Matching 293(1)
10.5 Related Issues and Future Outlook 294(2)
10.5.1 Correlation from S-parameters 294(1)
10.5.2 Over-the-Air Performance 294(2)
10.5.3 Future Outlook 296(1)
10.6 Conclusions 296(1)
10.7 Acknowledgment 297(2)
Chapter 11 Conclusion: MIMO Roadmaps 299(24)
11.1 Systems and Roadmaps 299(19)
11.1.1 Toward 4G Radio Systems 299(8)
11.1.2 Advanced MIMO Techniques Submitted in 4G 307(9)
11.1.3 Other Systems 316(2)
11.2 A Bird's Eye View on Current and Future Prospects for MIMO 318(5)
List of Symbols 323(2)
List of Acronyms 325(6)
References 331(26)
Index 357
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×