Phthon for data analysis
副标题:无
分类号:C819
ISBN:9787111436737
微信扫一扫,移动浏览光盘
简介
目录
前言
第1章 准备工作
本书主要内容
为什么要使用Python进行数据分析
重要的Python库
安装和设置
社区和研讨会
使用本书
致谢
第2章 引言
来自bit.ly的1.usa.gov数据
MovieLens 1M数据集
1880-2010年间全美婴儿姓名
小结及展望
第3章 IPython:一种交互式计算和开发环境
IPython基础
内省
使用命令历史
与操作系统交互
软件开发工具
IPython HTML Notebook
利用IPython提高代码开发效率的几点提示
高级IPython功能
致谢
第4章 NumPy基础:数组和矢量计算
NumPy的ndarray:一种多维数组对象
通用函数:快速的元素级数组函数
利用数组进行数据处理
用于数组的文件输入输出
线性代数
随机数生成
范例:随机漫步
第5章 pandas入门
pandas的数据结构介绍
基本功能
汇总和计算描述统计
处理缺失数据
层次化索引
其他有关pandas的话题
第6章 数据加载、存储与文件格式
读写文本格式的数据
二进制数据格式
使用HTML和Web API
使用数据库
第7章 数据规整化:清理、转换、合并、重塑
合并数据集
重塑和轴向旋转
数据转换
字符串操作
示例:USDA食品数据库
第8章 绘图和可视化
matplotlib API入门
pandas中的绘图函数
绘制地图:图形化显示海地地震危机数据
Python图形化工具生态系统
第9章 数据聚合与分组运算
GroupBy技术
数据聚合
分组级运算和转换
透视表和交叉表
示例:2012联邦选举委员会数据库
第10章 时间序列
日期和时间数据类型及工具
时间序列基础
日期的范围、频率以及移动
时区处理
时期及其算术运算
重采样及频率转换
时间序列绘图
移动窗口函数
性能和内存使用方面的注意事项
第11章 金融和经济数据应用
数据规整化方面的话题
分组变换和分析
更多示例应用
第12章 NumPy高级应用
ndarray对象的内部机理
高级数组操作
广播
ufunc高级应用
结构化和记录式数组
更多有关排序的话题
NumPy的matrix类
高级数组输入输出
性能建议
附录A Python语言精要
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问