Forecasting and time series : an applied approach = 预测与时间序列 / 3rd ed.

副标题:无

作   者:Bruce L. Bowerman, Richard T. O'Connell著.

分类号:

ISBN:9787111124108

微信扫一扫,移动浏览光盘

简介

本书的主要特点 清晰、完善地介绍了Box-Jenkins方法。 精确、易于理解地讨论了传递函数和干涉模型,并介绍了多元时间序列分析。 给出了基于真实案例的大量习题。 使用MINITAB和SAS输出给出预测的结果,并有选修的章节详细讲述MINITAB和SAS的用法。 本书是预测与时间序列分析课程的教材,书中讲解了预测的重要过程以及可以用于预测的各种统计技术。作者清晰地展示了在营销、金融,人力资源管理,产品调度,过程控制和策略管理中通过预测做出明智决策的重要性。 本书适合作为工商管理、理工(包括数学、统计学、

目录

contents

part i

introduction

chapter 1

an introduction to forecasting 2

1.1 introduction

1.2 forecasting and time series

1.3 forecasting methods

1.4 errors in forecasting

1.5 choosing a forecasting technique

1.6 an overview of quantitative forecasting techniques

1.7 computer packages: minitab and sas

exercises


chapter 2

basic statistical concepts

2.1 populations

2.2 probability

2.3 random samples and sample statistics

2.4 continuous probability distributions

.2.5 the normal probability distribution

2.6 the t-distribution, the f-distribution, and the chi-square distribution

2.7 confidence intervals for a population mean

2.8 hypothesis testing for a population mean

exercises

part ii

forecasting by using regression analysis


chapter 3

simple linear regression

3.1 the simple linear regression model

3.2 the least squares point estimates

3.3 point estimates and point predictions

3.4 model assumptions, the mean square error, and the standard error

3.5 testing the significance of the independent variable

3.6 a confidence interval for a mean value of the dependent variable and a

prediction interval for an individual value of the dependent variable

3.7 simple coefficients of determination and correlation

3.8 an f-test for the simple linear regression model

3.9 using the computer

exercises


chapter 4

multiple regression

4.1 the linear regression model

4.2 the least squares point estimates

4.3 point estimates and point predictions

4.4 the regression assumptions and the standard error

4.5 multiple coefficients of determination and correlation

4.6 an f-test for the overall model

this is an optional section.

4.7 statistical inference for bj and multicollinearity

4.8 confidence intervals and prediction intervals

4.9 an introduction to model building

4.10 residual analysis

4.11 using the computer

exercises


chapter 5

topics in regression analysis

5.1 interaction

5.2 an f-test for a portion of a model

5.3 using dummy variables to model qualitative independent variables

5.4 advanced concepts of multicollinearity

5.5 advanced model comparison methods

5.6 stepwise regression, forward selection, backward elimination,

and maximum r2 improvement

5.7 outlying and influential observations

5.8 handling unequal variances

5.9 using the computer

exercises

iii

forecasting by using time series regression,

decomposition methods,

and exponential smoothing


chapter 6

time series regression

6.1 modeling trend by using polynomial functions

6.2 detecting autocorrelation

6.3 types of seasonal variation

this is an optional section

6.4 modeling seasonal variation by using dummy variables

and trigonometric functions

6.5 growth curve models

6.6 handling first-order autocorrelation

6.7 using the computer

exercises


chapter 7

decomposition methods

7.1 multiplicative decomposition

7.2 additive decomposition

7.3 shifting seasonal patterns

7.4 the census ii decomposition method and sas proc x11

7.5 using the computer

exercises


chapter 8

exponential smoothing

8.1 simple exponential smoothing

8.2 adaptive control procedures

8.3 double exponential smoothing

8.4 winters' method

8.5 exponential and damped trends

8.6 prediction intervals

8.7 concluding comments

8.8 using the computer

exercises

part iv

forecasting by using basic techniques

of the box-jenkins methodology

this is an optional section.

contents


chapter 9

nonseasonal box-jenkins models

and their tentative identification

9.1 stationary and nonstationary time series

9.2 the sample autocorrelation and partial

autocorrelation functions: the sac and spac

9.3 an introduction to nonseasonal modeling and forecasting

9.4 tentative identification of nonseasonal box-jenkins models

'9.5 using the computer

exercises


chapter 10

estimation, diagnostic checking, and forecasting

for nonseasonal box-jenkins models

10.1 estimation

10.2 diagnostic checking

10.3 forecasting

10.4 a case study

10.5 using the computer

exercises


chapter 11

an introduction to

box-jenkins seasonal modeling

11.1 transforming a seasonal time series into a stationary time series

11.2 two examples of seasonal modeling and forecasting

11.3 using the computer

exercises


part v

forecasting by using advanced techniques of

the box-jenkins methodology

this is an optional

chapter

general box-jenkins seasonal modeling

12.1 the general seasonal model and guidelines for tentative identification

12.2 improving an inadequate seasonal model

12.3 using the computer

exercises


chapter

using the box-jenkins methodology to

improve time series regression models

and to implement exponential smoothing

13.1 box-jenkins error term models in time series regression

13.2 seasonal intervention models

13.3 box-jenkins implementation of exponential smoothing

'13.4 using the computer

exercises


chapter 14

transfer functions and intervention models

14.1 a three-step procedure for building a transfer function model

14.2 intervention models

14.3 using the computer

exercises

appendix a

statistical tables

appendix b

references

index

this is an optional section


已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

Forecasting and time series : an applied approach = 预测与时间序列 / 3rd ed.
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon