Classical mechanics = 经典力学 / 3rd ed.

副标题:无

作   者:Herbert Goldstein, Charles Poole, John Safko.

分类号:

ISBN:9787040160918

微信扫一扫,移动浏览光盘

简介

   美国哥伦比亚大学Herbert Goldstein编著的《经典力学》(Classical   Mechanics)是一本有着很高知名度的经典力学教材,长期以来被世界上多   所大学选用。本影印版是2002年出版的第3版。与前两版相比,第3版在保留   基本经典力学内容的基础上,做了不少调整。例如,增加了混沌一章;引入   了一些对新研究问题的方法的讨论,例如张量、群论的等;对于第二版中的   一些内容做了适当的压缩和调整。    全书共13章,可作为为物理类专业经典力学课程的教材,尤其适合开展   双语教学的学校,对于有志出国深造的人员也是一本必不可少的参考书。   

目录

  1 Survey of the Elementary Principles
   1.1 Mechanics of a Particle 1
   1.2 Mechanics of a System of Particles 5
   1.3 Constraints 12
   1.4 D'Alembert's Principle and Lagrange's Equations 16
   1.5 Velocity-Dependent Potentials and the Dissipation Function 22
   1.6 Simple Applications of the Lagrangian Formulation 24
  2 Variational Principles and I.agrange's Equations
   2.1 Hamilton's Principle 34
   2.2 Some Techniques of the Calculus of Variations 36
   2.3 Derivation of Lagrange's Equations from Hamilton's Principle 44
   2.4 Extension of Hamilton's Principle to Nonholonomic Systems 45
   2.5 Advantages of a Variational Principle Formulation 51
   2.6 Conservation Theorems and Symmetry Properties 54
   2.7 Energy Function and the Conservation of Energy 60
  3 The Central Force Problem
   3.1 Reduction to the Equivalent One-Body Problem 70
   3.2 The Equations of Motion and First Integrals 72
   3.3 The Equivalent One-Dimensional Problem, and Classification of Orbits 76
   3.4 The Virial Theorem 83
   3.5 The Differential Equation for the Orbit, and Integrable Power-Law Potentials 86
   3.6 Conditions for Closed Orbits (Bertrand's Theorem) 89
   3.7 The Kepler Problem: Inverse-Square Law of Force 92
   3.8 The Motion in Time in the Kepler Problem 98
   3.9 The Laplace-Runge-Lenz Vector 102
   3.10 Scattering in a Central Force Field 106
   3.11 Transformation of the Scattering Problem to Laboratory Coordinates 114
   3.12 The Three-Body Problem 121
  4 The Kinematics of Rigid Body Motion
   4.1 The Independent Coordinates of a Rigid Body 134
   4.2 Orthogonal Transformations 139
   4.3 Formal Properties of the Transformation Matrix 144
   4.4 The Euler Angles 150
   4.5 The Cayley-Klein Parameters and Related Quantities 154
   4.6 Euler's Theorem on the Motion of a Rigid Body 155
   4.7 Finite Rotations 161
   4.8 Infinitesimal Rotations 163
   4.9 Rate of Change of a Vector 171
   4.10 The Coriolis Effect 174
  5 The Rigid Body Equations of Motion
   5.1 Angular Momentum and Kinetic Energy of Motion about a Point 184
   5.2 Tensors 188
   5.3 The Inertia Tensor and the Moment of Inertia 191
   5.4 The Eigenvalues of the Inertia Tensor and the Principal Axis Transformation 195
   5.5 Solving Rigid Body Problems and the Euler Equations of Motion 198
   5.6 Torque-free Motion of a Rigid Body 200
   5.7 The Heavy Symmetrical Top with One Point Fixed 208
   5.8 Precession of the Equinoxes and of Satellite Orbits 223
   5.9 Precession of Systems of Charges in a Magnetic Field 230
  6 Oscillations
   6.1 Formulation of the Problem 238
   6.2 The Eigenvalue Equation and the Principal Axis Transformation 241
   6.3 Frequencies of Free Vibration, and Normal Coordinates 250
   6.4 Free Vibrations of a Linear Triatomic Molecule 253
   6.5 Forced Vibrations and the Effect of Dissipative Forces 259
   6.6 Beyond Small Oscillations: The Damped Driven Pendulum and the Josephson Junction 265
  7 The Classical Mechanics of the Special Theory of Relativity
   7.1 Basic Postulates of the Special Theory 277
   7.2 Lorentz Transformations 280
   7.3 Velocity Addition and Thomas Precession 282
   7.4 Vectors and the Metric Tensor 286
   7.5 1-Forms and Tensors 289
   7.6 Forces in the Special Theory; Electromagnetism 297
   7.7 Relativistic Kinematics of Collisions and Many-Particle Systems 300
   7.8 Relativistic Angular Momentum 309
   7.9 The Lagrangian Formulation of Relativistic Mechanics 312
   7.10 Covariant Lagrangian Formulations 318
   7.11 Introduction to the General Theory of Relativity 324
  8 The Hamilton Equations of Motion
   8.1 Legendre Transformations and the Hamilton Equations of Motion 334
   8.2 Cyclic Coordinates and Conservation Theorems 343
   8.3 Routh's Procedure 347
   8.4 The Hamiltonian Formulation of Relativistic Mechanics 349
   8.5 Derivation of Hamilton's Equations from a Variational Principle 353
   8.6 The Principle of Least Action 356
  9 Canonical Transformations
   9.1 The Equations of Canonical Transformation 368
   9.2 Examples of Canonical Transformations 375
   9.3 The Harmonic Oscillator 377
   9.4 The Symplectic Approach to Canonical Transformations 381
   9.5 Poisson Brackets and Other Canonical Invariants 388
   9.6 Equations of Motion, Infinitesimal Canonical Transformations, and
   Conservation Theorems in the Poisson Bracket Formulation 396
   9.7 The Angular Momentum Poisson Bracket Relations 408
   9.8 Symmetry Groups of Mechanical Systems 412
   9.9 Liouville's Theorem 419
  10 Hamilton-lacobi Theory and Action-Angle Variables
   10.1 The Hamilton-Jacobi Equation for Hamilton's Principal Function 430
   10.2 The Harmonic Oscillator Problem as an Example of the Hamilton-Jacobi Method 434
   10.3 The Hamilton-Jacobi Equation for Hamilton's Characteristic Function 440
   10.4 Separation of Variables in the Hamilton-Jacobi Equation 444
   10.5 Ignorable Coordinates and the Kepler Problem 445
   10.6 Action-angle Variables in Systems of One Degree of Freedom 452
   10.7 Action-Angle Variables for Completely Separable Systems 457
   10.8 The Kepler Problem in Action-angle Variables 466
  11 Classical Chaos
   11.1 Periodic Motion 484
   11.2 Perturbations and the Kolmogorov-Arnold-Moser Theorem 487
   11.3 Attractors 489
   11.4 Chaotic Trajectories and Liapunov Exponents 491
   11.5 Poincar6 Maps 494
   11.6 Hrnon-Heiles Hamiltonian 496
   11.7 Bifurcations, Driven-damped Harmonic Oscillator, and Parametric Resonance 505
   11.8 The Logistic Equation 509
   11.9 Fractals and Dimensionality 516
  12 Canonical Perturbation Theory
   12.1 Introduction 526
   12.2 Time-dependent Perturbation Theory 527
   12.3 Illustrations of Time-dependent Perturbation Theory 533
   12.4 Time-independent Perturbation Theory 541
   12.5 Adiabatic Invariants 549
  13 Introduction to the Lagrangian and HamUtonian Formulations for Continuous Systems and Fields
   13.1 The Transition from a Discrete to a Continuous System 558
   13.2 The Lagrangian Formulation for Continuous Systems 561
   13.3 The Stress-energy Tensor and Conservation Theorems 566
   13.4 Hamiltonian Formulation 572
   13.5 Relativistic Field Theory 577
   13.6 Examples of Relativistic Field Theories 583
   13.7 Noether's Theorem 589
  Appendix A Euler Angles in Alternate Conventions and Cayley-Klein Parameters 601
  Appendix B Groups and Algebras 605
  Selected Bibliography 617
  Author Index 623
  Subject Index 625
  

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

Classical mechanics = 经典力学 / 3rd ed.
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon