简介
徐俊明所著《图论基础教程(英文版)/运筹与管 理科学丛书》着眼于有向图,将无向图作为特例,在 一定的深度和广度上系统地阐述了图论的基本概念、 理论和方法以及基本应用.全书内容共分7章,包括 Euler回与Hamilton圈、树与图空间、平面图、网络 流与连通度、匹配与独立集、染色理论、图与群以及 图在矩阵论、组合数学、组合优化、运筹学、线性规 划、电子学以及通讯和计算机科学等多方面的应用. 每章分为理论和应用两部分,章末有小结和参考文献 .各章内容之间联系紧密,许多著名的定理给出最新 最简单的多种证明.每小节末有大量习题,书末附有 记号和名词索引.
目录
Preface
Chapter 1 Basic Concepts of Graphs
1.1 Graph and Graphical Representation
1.2 Graph Isomorphism
1.3 Vertex Degrees
1.4 Subgraphs and Operations
1.5 Walks, Paths and Connection
Chapter 2 Advanced Concepts of Graphs
2.1 Distances and Diameters
2.2 Circuits and Cycles
2.3 Eulerian Graphs
2.4 Hamiltonian Graphs
2.5 Matrix Representations of Graphs
2.6 Exponents of Primitive Matrices
Chapter 3 Trees and Graphic Spaces
3.1 Trees and Spanning Trees
3.2 Vector Spaces of Graphs
3.3 Enumeration of Spanning Trees
3.4 The Minimum Connector Problem
3.5 The Shortest Path Problem
3.6 The Electrical Network Equations
Chapter 4 Plane Graphs and Planar Graphs
4.1 Plane Graphs and Euler’s Formula
4.2 Kuratowski’s Theorem
4.3 Dual Graphs
4.4 Regular Polyhedra
4.5 Layout of Printed Circuits
Chapter 5 Flows and Connectivity
5.1 Network Flows
5.2 Menger’s Theorem
5.3 Connectivity
5.4 Design of Transport Schemes
5.5 Design of Optimal Transport Schemes
5.6 The Chinese Postman Problem
5.7 Construction of Squared Rectangles
Chapter 6 Matchings and Independent Sets
6.1 Matchings
6.2 Independent Sets
6.3 The Personnel Assignment Problem
6.4 The Optimal Assignment Problem
6.5 The Travelling Salesman Problem
Chapter 7 Colorings and Integer Flows
7.1 Vertex-Colorings
7.2 Edge-Colorings
7.3 Face-Coloring and Four-Color Problem
7.4 Integer Flows and Cycle Covers
Chapter 8 Graphs and Groups
8.1 Group Representation of Graphs
8.2 Transitive Graphs
8.3 Graphic Representation of Groups
8.4 Design of Interconnection Networks
Bibliography
List of Notations
Index
Chapter 1 Basic Concepts of Graphs
1.1 Graph and Graphical Representation
1.2 Graph Isomorphism
1.3 Vertex Degrees
1.4 Subgraphs and Operations
1.5 Walks, Paths and Connection
Chapter 2 Advanced Concepts of Graphs
2.1 Distances and Diameters
2.2 Circuits and Cycles
2.3 Eulerian Graphs
2.4 Hamiltonian Graphs
2.5 Matrix Representations of Graphs
2.6 Exponents of Primitive Matrices
Chapter 3 Trees and Graphic Spaces
3.1 Trees and Spanning Trees
3.2 Vector Spaces of Graphs
3.3 Enumeration of Spanning Trees
3.4 The Minimum Connector Problem
3.5 The Shortest Path Problem
3.6 The Electrical Network Equations
Chapter 4 Plane Graphs and Planar Graphs
4.1 Plane Graphs and Euler’s Formula
4.2 Kuratowski’s Theorem
4.3 Dual Graphs
4.4 Regular Polyhedra
4.5 Layout of Printed Circuits
Chapter 5 Flows and Connectivity
5.1 Network Flows
5.2 Menger’s Theorem
5.3 Connectivity
5.4 Design of Transport Schemes
5.5 Design of Optimal Transport Schemes
5.6 The Chinese Postman Problem
5.7 Construction of Squared Rectangles
Chapter 6 Matchings and Independent Sets
6.1 Matchings
6.2 Independent Sets
6.3 The Personnel Assignment Problem
6.4 The Optimal Assignment Problem
6.5 The Travelling Salesman Problem
Chapter 7 Colorings and Integer Flows
7.1 Vertex-Colorings
7.2 Edge-Colorings
7.3 Face-Coloring and Four-Color Problem
7.4 Integer Flows and Cycle Covers
Chapter 8 Graphs and Groups
8.1 Group Representation of Graphs
8.2 Transitive Graphs
8.3 Graphic Representation of Groups
8.4 Design of Interconnection Networks
Bibliography
List of Notations
Index
A First Course in Graph Theory
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×