Understanding and solving environmental problems in the 21st century : toward a new, integrated h...
副标题:无
作 者:edited by Robert Costanza and Sven Erik J瞨gensen.
分类号:
ISBN:9780080441115
微信扫一扫,移动浏览光盘
简介
• integrated modeling and assessment • complex, adaptive, hierarchical systems • ecosystem services • science and decision-making • ecosystem health and human health • quality of life and the distribution of wealth and resources.
This book will act as a state of the art assessment of integrated environmental science and its relation to real world problem solving. It is aimed not only at the academic community, but also as a sourcebook for managers, policy makers, and the informed public. It deals both with the state of the science and the level of consensus among scientists on key environmental issues.
The concepts underlying this book were developed at the 2nd EcoSummit workshop held in Halifax, Nova Scotia, June,2000, with active participation from all delegates, and attempts to present their collective view.
目录
Preface v
EcoSummit Participant List vii
Introduction: Understanding and Solving Environmental Problems in the 21st Century: Toward a new, integrated ``hard problem science'' 1(2)
R. Costanza
S.E. Jørgensen
References 3(2)
Integrated Assessment and Modeling - Science for Sustainability 5(14)
G. Harris
Abstract 5(1)
Introduction 6(1)
The global context 6(1)
Changes to the enterprise of scientific research 7(3)
``Clean and green'' drivers on policy and markets 10(1)
The science of IA and IAM - integration and synthesis 11(3)
IAM and ESM - the science of the future? 14(5)
References 16(3)
The Potential for Integrated Assessment and Modeling to Solve Environmental Problems: Vision, Capacity, and Direction 19(22)
P. Parker
R. Letcher
A. Jakeman
M.B. Beck
G. Harris
R.M. Argent
M. Hare
C. Pahl-Wostl
A. Voinov
M. Janssen
P. Sullivan
M. Scoccimarro
A. Friend
M. Sonnenshein
D. Barker
L. Matejicek
D. Odulaja
P. Deadman
K. Lim
G. Larocque
P. Tarikhi
C. Fletcher
A. Put
T. Maxwell
A. Charles
H. Breeze
N. Nakatani
S. Mudgal
W. Naito
O. Osidele
I. Eriksson
U. Kautsky
E. Kautsky
B. Naeslund
L. Kumblad
R. Park
S. Maltagliati
P Girardin
A. Rizzoli
D. Mauriello
R. Hoch
D. Pelletier
J. Reilly
R. Olafsdottir
S. Bin
Abstract 19(1)
Introduction 20(1)
Integration 21(2)
Visions of the future 23(2)
Optimistic view 23(1)
Pessimistic view 24(1)
Evolution of IAM 25(1)
IAM current position: Points of agreement 26(2)
Case studies 28(1)
Model complexity 29(1)
Validation 29(2)
Integrated Assessment 31(1)
Agent-based models 32(1)
Communication 33(1)
Values in models 34(1)
Future of IAM 34(2)
Links to other groups 36(1)
Conclusion 37(4)
References 38(3)
Complex Adaptive Hierarchical Systems 41(54)
B.C. Patten
B.D. Fath
J.S. Choi
S. Bastianoni
S.R. Borrett
S. Brandt-Williams
M. Debeljak
J. Fonseca
W.E. Grant
D. Karnawati
J.C. Marques
A. Moser
E. Muller
C. Pahl-Wostl
R. Seppelt
W.H. Steinborn
Y.M. Svirezhev
Abstract 41(1)
The new confrontation - biocomplex wholeness 42(11)
Complexity 43(3)
Adaptation and hierarchy 46(7)
Measuring the organizational complexity of CAHSystems 53(20)
Measuring the complexity of genomes and organisms - biocomplexity 54(3)
Exergy-based orientors in a natural (virgin) forest 57(5)
Exergy and information of solar radiation 62(3)
Emergy and exergy 65(4)
Integration of orientors 69(3)
Adaptation and hierarchy, again 72(1)
Systemicity 73(9)
Eco-anthropic CAHSystems 73(2)
A polycentric approach to integrated assessment 75(2)
Eco-geological assessment towards sustainable coastal development in Yogyakarta, Indonesia - scale adjustment to observe and analyze CAHSystems 77(5)
Concluding thoughts 82(13)
Glossary 82(5)
References 87(8)
Complex Adaptive Hierarchical Systems 95(6)
B.C. Patten
B.D. Fath
J.S. Choi
S. Bastianoni
S.R. Borrett
S. Brandt-Williams
M. Debeljak
J. Fonseca
W.E. Grant
D. Karnawati
J.C. Marques
A. Moser
F. Muller
C. Pahl-Wostl
R. Seppelt
W.H. Steinborn
Y.M. Svirezhev
Abstract 95(1)
Introduction 95(1)
About theory 96(1)
About applications 97(1)
About modeling 98(1)
Conclusions 99(2)
References 99(2)
Ecosystem Services, Their Use and the Role of Ecological Engineering: State of the Art 101(26)
A. Dakers
Abstract 101(1)
Introduction 102(1)
Defining ecosystem services 103(2)
Humankind's relationship with the natural environment 105(4)
Anthropocentric or ecocentric valuing 105(1)
Ecosystem relationships - embeddedness 105(4)
Valuing ecosystem services 109(1)
The use and misuse of ecosystem services 109(1)
Designing and engineering to restore a sustainable relationship with ecosystems 110(4)
Making better use of ecosystem services 110(1)
Frontline projects 111(1)
Players involved in achieving better use of ecosystem services 111(1)
Engineer as designer 112(2)
Ecological engineering 114(8)
Case Study 1: Ministry of Transport in the Netherlands 115(1)
Case Study 2: Oxelosund Vatmark, Sweden 116(1)
Case Study 3: Donaumoos - Germany 116(1)
Case Study 4: Kaja, As, Norway 116(1)
Case Study 5: Aremark 117(1)
Case Study 6: Kagerod Recycling Project 117(1)
Case Study 7: Ruswil, Switzerland 117(1)
Case Study 8: Calcutta Wastewater-fed Aquaculture 118(1)
Case Study 9: Stensund Aquaculture Centre 119(1)
Case Study 10: Water Enhancement Programme, Christchurch 120(1)
Case study evaluation 121(1)
Under-utilization of ecosystem services 122(1)
Conclusions 123(4)
Acknowledgements 124(1)
References 124(3)
Ecosystem Services 127(12)
B. Guterstam
A. Werker
with M. Adamsson
D. Barker
A. Brull
A. Dakers
S. Gossling
J. Heeb
S. Loiselle
U. Mander
D. Melaku Canu
R. Roggenbauer
M. Roux
G.D. Santopietro
D. Stuart
M. Trudeau
H.D. van Bohemen
Abstract 127(1)
Introduction 127(2)
Ecosystem services 129(3)
Key questions and common ground 132(2)
The role of ecosystems services tomorrow 134(3)
Conclusions 137(2)
References 137(2)
Science and Decisionmaking 139(14)
V.H. Dale
Abstract 139(1)
Science and decisionmaking 140(1)
Scientists' role in decisionmaking 140(1)
Three case studies 141(5)
Mount St. Helens 141(2)
Tennessee Cedar Barrens 143(1)
The Brazilian Amazon 144(1)
Lessons learned 145(1)
Characteristics of scientists and decisionmakers influence how they interact 146(3)
Questions about the relationship between science and decisionmaking 149(4)
Acknowledgements 150(1)
References 151(2)
Science and Decisionmaking 153(14)
E.J. Rykiel Jr.
J. Berkson
V.A. Brown
W. Krewitt
I. Peters
M. Schwartz
J. Shogren
D. Van der Molen
R. Blok
M. Borsuk
R. Bruins
K. Cover
V. Dale
J. Dew
C. Etnier
L. Fanning
R. Felix
M. Nordin Hasan
H. Hong
A.W. King
N. Krauchi
K. Lubinsky
J. Olson
J. Onigkeit
G. Patterson
K.S. Rajan
P. Reichert
K. Sharma
V. Smith
M. Sonnenschein
R. St-Louis
D. Stuart
R. Supalla
H. van Latesteijn
Abstract 153(1)
Introduction 153(5)
Working definitions 153(1)
Multiple roles of science 154(1)
The role of scientists in controversial issues 155(1)
Scientists and activism 156(1)
Education of scientists 156(1)
Science based on holism 157(1)
Increasing the effectiveness of the individual environmental scientist 158(2)
Pathways to involvement in decisionmaking 158(1)
Changing the environmental science curriculum 159(1)
Case studies 160(3)
Integrating science and economics for environmental policymaking in Europe 161(1)
Lake management and demand-driven research in the Netherlands 162(1)
Conclusions 163(4)
Acknowledgements 164(1)
References 165(2)
Ecosystem Health and Human Health 167(22)
L. Vasseur
D.J. Rapport
J. Hounsell
Abstract 167(1)
Introduction 167(1)
Ecosystems, humans, and the concept of health 168(4)
Ecosystems 169(1)
Health 170(2)
Ignoring the link 172(3)
Climate change 175(3)
Agrosystems and food production 178(3)
Biodiversity and declining productive capacity 181(2)
Discussion 183(6)
Acknowledgements 185(1)
References 185(4)
Ecosystem Health and Human Health: Healthy Planet, Healthy Living 189(32)
L. Vasseur
P.G. Schaberg
J. Hounsell
P.O. Ang Jr.
D. Cote
L.D. Duc
J.S. Ebenezer
D. Fairbanks
B. Ford
W. Fyfe
R. Gordon
Y. Guang
J. Guernsey
A. Hadi Harman Shaa
A. Hamilton
W. Hart
H. Hong
J. Howard
B. Huang
Y. Huang
D. Karnawati
R. Lannigan
S. Lawrence
Z. Li
Y. Liu
D. Malley
L. McLean
R. McMurtry
V. Mercier
N. Mori
M. Munawar
M.A. Naragdao
K. Okamoto
D. Rainham
D. Riedel
E. Rodriguez
M. Saraf
H. Savard
N. Scott
A. Singleton
R. Smith
H. Taylor
N.T. Hoang Lien
S. Xing
H. Xuan Co
Abstract 189(1)
Introduction 190(3)
Linkages between ecosystem health and human health 193(6)
Air quality 193(1)
Water resources 194(2)
Food resources 196(1)
Soils 197(1)
Biodiversity 197(1)
Other models 198(1)
Sources of solutions 199(3)
Priority actions 202(3)
Barriers to effective action 205(3)
Sustenance needs 205(1)
Little connection to the land 206(1)
Resistance to change 206(1)
Ignorance 207(1)
Low critical mass 207(1)
Measures, indicators, or metrics of progress 208(5)
Conclusions 213(8)
Acknowledgements 217(1)
References 217(4)
Quality of Life and the Distribution of Wealth and Resources 221(38)
R. Costanza
J. Farley
P. Templet
Abstract 221(1)
How is Quality of Life (QOL) defined? 221(4)
How has Quality of Life been measured? 225(12)
Economic income, economic welfare, and human welfare 225(1)
Level and pattern of economic activity: gross national product 225(3)
Sustainable economic income 228(3)
Measuring economic welfare 231(3)
Assessing human welfare directly 234(3)
A comparison of two approaches to fairness in the distribution of wealth and resources 237(11)
Fairness across individuals in space 237(3)
Fairness across individuals in time 240(7)
Fairness across countries in space and time 247(1)
Can we measure fairness? 248(3)
What is the relationship between fairness and QOL? 251(4)
Principles for achieving a sustainable, fair, and high-QOL society 255(4)
References 255(4)
Quality of Life and the Distribution of Wealth and Resources 259(44)
J. Farley
R. Costanza
P. Templet
M. Corson
Ph. Crabbe
R. Esquivel
K. Furusawa
W. Fyfe
O. Loucks
K. MacDonald
L. MacPhee
L. McArthur
C. Miller
P O'Brien
G. Patterson
J. Ribemboim
S.J. Wilson
Abstract 259(1)
How do we define Quality of Life (QOL)? 259(5)
What are human needs? 260(1)
Satisfiers and wants 260(2)
Implications of our definition for improving QOL 262(1)
QOL and the four capitals 263(1)
How can we measure QOL? 264(5)
Are objective measures suitable? 264(2)
Operationalizing human needs assessment as a measure of QOL 266(1)
Ecosystem services: indicators to integrate with QOL 267(1)
The implications of using HNA as a measure of QOL 267(2)
Development of indicators of fairness in the distribution of wealth and resources 269(8)
Natural capital and market failures 270(3)
The elimination of poverty 273(1)
Maximum income level 274(1)
Geographical fairness 275(2)
Approaches to measuring fairness 277(5)
Ecosystem health and functioning markets 278(1)
Poverties and pathologies 279(1)
Wealth and power 279(2)
A Quality of Life Gini Coefficient? 281(1)
Implications of the relationship between fairness and QOL 282(2)
Positional wealth 283(1)
Income inequality as a detriment to QOL 283(1)
Do we still need incentives to produce? 284(1)
How do we achieve sustainable, fair, and high QOL? 284(13)
Current world setting 285(4)
Policy suggestions 289(1)
Natural capitalism, increased efficiency, industrial ecology, and dematerialization 290(7)
Conclusion 297(6)
Appendix. The Sustainability Bill of Rights 298(1)
References 298(5)
Conclusions 303(4)
S.E. Jørgensen
R. Costanza
References 307(2)
Author Index 309(10)
Subject Index 319
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问