机器学习与资产定价

副标题:无

作   者:(美)Stefan Nagel 著,王熙 石川 译

分类号:

ISBN:9787121434365

微信扫一扫,移动浏览光盘

简介

本书从资产定价的核心问题出发,前沿而体系化地讨论了如何通过经济学推理将机器学习方法引入实证和理论资产定价研究之中,从而有效解决机器学习应用在资产定价中所面临的挑战,搭建了研究机器学习与资产定价的桥梁。为提升阅读体验,帮助读者充分理解书中内容,译者王熙教授与石川博士在行文中加入了精彩丰富的译者注,给原著提供必要的背景知识,从而帮助读者更好地掌握书中的行文逻辑。其中,为本书补充的诸多公式推导过程也能帮助读者加深对贝叶斯统计框架的理解。

目录


目录

第1章 引言 1

1.1 实证资产定价中的特设稀疏性假设

1.2 理论资产定价中的特设稀疏性假设

1.3 机器学习

1.4 术语

1.5 监督学习和无监督学习

1.6 本书的局限性

1.7 本书的结构

第2章 监督学习 16

2.1 将监督学习视为函数逼近问题

2.2 回归方法

2.2.1 线性方法:岭回归和Lasso

2.2.2 树方法和随机森林

2.2.3 神经网络

2.3 超参数调优

2.4 贝叶斯解释

第3章 资产定价中的监督学习 46

3.1 例子:截面股票收益率预测

3.2 预测性能评价

3.3 正则化与投资表现

3.4 预期收益率与协方差的关联

3.5 通过构建投资组合估计协方差矩阵

3.6 非线性

3.7 稀疏性

3.8 结构性变化

3.9 结束语

第4章 机器学习与截面资产定价 97

4.1 基于公司特征因子的资产定价

4.2 监督学习视角

4.2.1 收缩估计量

4.2.2 稀疏性

4.2.3 数据驱动的超参选择

4.3 实证分析

4.3.1 50 个异象特征的实证结果

4.3.2 WRDS 财务比例的实证结果

4.3.3 特征之间的交互作用

4.4 样本外资产定价检验

4.5 相关最新研究

4.6 结束语

第5章 投资者信念形成的机器学习模型 142

5.1 资产市场

5.1.1 投资者

5.1.2 定价

5.1.3 基于计量经济学的观测者视角

5.2 投资者学习

5.2.1 OLS 学习

5.2.2 带有信息先验的贝叶斯学习

5.3 收益率可预测性

5.3.1 样本内收益率可预测性

5.3.2 (不存在)样本外收益率可预测性

5.4 扩展研究

5.4.1 稀疏性

5.4.2 额外的收缩和稀疏性

5.5 对实证研究的启示

5.6 结束语

第6章 研究议程 180

6.1 描述投资机会的特征

6.1.1 机器学习的经济学约束

6.1.2 非线性

6.1.3 结构性变化

6.2 资产需求分析

6.2.1 需求系统估计

6.2.2 预期的形成

6.3 机器学习的理论应用

6.3.1 有限理性

6.3.2 投资者的异质性

6.4 结束语

附录A 部分公式推导 201

参考文献 210

索引 217


已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

机器学习与资产定价
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon