人工智能原理与实践 全面涵盖人工智能和数据科学各个重要体系经典 刘春雷著

副标题:无

作   者:刘春雷

分类号:

ISBN:9787301317709

微信扫一扫,移动浏览光盘

简介

人工智能的日益广泛的应用和普及,而要深入理解人工智能,我们必须全面理解底层的各类机器学习算法基本原理并能驾驭人工智能各种应用。《人工智能原理与实践》分为13章,前7章为原理篇。原理篇中,我们重点讨论机器学习模型建模的全部流程,各类常用的机器学习算法原理,深度学习和强化学习原理,机器学习涉及的优化论原理,以及机器学习和自然语言处理技术。后面6章为实战篇,我们重点讨论信用卡场景中的客户细分,保险行业中的生活事件时间序列预测,电商交易中欺诈客户预测,信用卡和金融贷款场景中的风控预测,房价估值和预测,以及股市短期回报率预测等多个实际应用场景。《人工智能原理与实践》理论知识覆盖面广而又保留了有价值的推导,特别适合在各个行业工作的数据科学从业者,在校学习的人工智能和数据科学专业学生,科技公司的管理者和决策者,以及人工智能的初学者和爱好者。

目录


第1章 人工智能应用场景——金融风控
1.1 反欺诈与信用评估
1.2 信用评估模型介绍
1.3 客户营销与风控管理
1.4 建模中的拒绝推断
1.5 评分卡模型
第2章 人工智能中的机器学习和模型评价
2.1 机器学习预测结果推广性理论
2.2 机器学习问题的分类
2.3 二分类模型的评价方法
2.4 多分类模型的评价方法
2.5 回归模型的评价方法
第3章 机器学习建模重要步骤
3.1 数据收集
3.2 数据清洗转换和预处理
3.3 特征工程
3.4 模型的选择和建立
3.5 模型的监控
第4章 机器学习常用算法原理
4.1 回归算法
4.2 梯度下降优化
4.3 朴素贝叶斯、支持向量机和决策树算法
4.4 集成算法、随机森林算法和梯度增强机算法
4.5 无监督学习算法
4.6 神经网络算法
第5章 深度学习和强化学习
5.1 深度学习算法
5.2 强化学习算法
第6章 机器学习和化
6.1 化理论和机器学习的关系
6.2 化理论的分类和理解
6.3 机器学习算法中化应用
第7章 自然语言处理算法原理
7.1 文本数据处理和NLP基础
7.2 机器学习算法在NLP中的应用
7.3 深度学习在NLP中的应用
第8章 信用卡客户细分
8.1 EDA探索性数据分析
8.2 数据预处理和特征工程
8.3 K-Means聚类建模和分组个数选择
8.4 建模结果可视化和分析
第9章 保险公司时间序列生活事件预测
9.1 朴素贝叶斯算法和马尔可夫链算法应用
9.2 时间序列特征工程和梯度增强机算法
9.3 深度学习算法的应用
第10章 电商网站交易欺诈预测
10.1 EDA探索性数据分析
10.2 模型选择
10.3 数据特征工程
第11章 信用卡和信用贷款风险预测
11.1 信用卡客户风险预测和管理
11.2 个人信用分期贷款风险预测
第12章 美国旧金山房屋成交价格预测
12.1 EDA探索性数据分析和特征工程
12.2 房屋价格预测建模和验证
第13章 股票短期回报率预测
13.1 EDA探索性数据分析
13.2 数据预处理和特征工程
13.3 短期回报率预测模型


已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

人工智能原理与实践 全面涵盖人工智能和数据科学各个重要体系经典 刘春雷著
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon