普林斯顿数学指南.第三卷

副标题:无

作   者:(英)Timothy Gowers著;齐民友译

分类号:

ISBN:9787030395283

微信扫一扫,移动浏览光盘

简介

《普林斯顿数学指南(第三卷)》是由Fields 奖得主T. Gowers 主编、133 位著名数学家共同参与撰写的大型文集. 《普林斯顿数学指南(第三卷)》由288 篇长篇论文和短篇条目构成, 目的是对20 世纪最后一二十年纯粹数学的发展给出一个概览, 以帮助青年数学家学习和研究其最活跃的部分, 这些论文和条目都可以独立阅读. 原书有八个部分, 除第Ⅰ部分是一个简短的引论、第Ⅷ部分是《普林斯顿数学指南(第三卷)》的“终曲”以外, 《普林斯顿数学指南(第三卷)》分为三大板块, 核心是第Ⅳ部分“数学的各个分支”, 共26 篇长文, 介绍了20 世纪最后一二十年纯粹数学研究中最重要的成果和最活跃的领域, 第Ⅲ部分“数学概念”和第Ⅴ部分“定理与问题”都是为它服务的短条目. 第二个板块是数学的历史, 由第Ⅱ部分“现代数学的起源”(共7 篇长文)和第Ⅵ部分“数学家传记”(96 位数学家的短篇传记)组成. 第三个板块是数学的应用, 即第Ⅶ部分“数学的影响”(14 篇长文章). 作为《普林斯顿数学指南(第三卷)》“终曲”的第Ⅷ部分“结束语:一些看法”则是对青年数学家的建议等7 篇文章. 中译本分为三卷, 第一卷包括第Ⅰ~Ⅲ部分, 第二卷即第Ⅳ部分, 第三卷包括第Ⅴ~Ⅷ部分.

目录

译者序序撰稿人第Ⅴ
部分定理与问题.......................................................... 1
Ⅴ.1ABC猜想............................................................. 1

Ⅴ.2阿蒂亚–辛格指标定理.................................................2

Ⅴ.3巴拿赫–塔尔斯基悖论.................................................6

Ⅴ.4Birch-Swinnerton-Dyer猜想........................................... 8

Ⅴ.5卡尔松定理........................................................... 9

Ⅴ.6中心极限定理........................................................ 11

Ⅴ.7有限单群的分类..................................................... 12

Ⅴ.8狄利克雷素数定理................................................... 14

Ⅴ.9遍历定理.............................................................14

Ⅴ.10费马大定理......................................................... 19

Ⅴ.11不动点定理......................................................... 21

Ⅴ.12四色定理........................................................... 27

Ⅴ.13代数的基本定理.................................................... 31

Ⅴ.14算术的基本定理.................................................... 32

Ⅴ.15哥德尔定理......................................................... 33

Ⅴ.16Gromov多项式增长性定理......................................... 37

Ⅴ.17希尔伯特零点定理.................................................. 38

Ⅴ.18连续统假设的独立性............................................... 38

Ⅴ.19不等式.............................................................. 39

Ⅴ.20停机问题的不可解性............................................... 44

Ⅴ.21五次方程的不可解性............................................... 48

Ⅴ.22刘维尔定理和罗特定理............................................. 50

Ⅴ.23Mostow强刚性定理.................................................52

Ⅴ.24P 对NP 问题...................................................... 56

Ⅴ.25庞加莱猜想......................................................... 56

Ⅴ.26素数定理与黎曼假设............................................... 57

Ⅴ.27加法数论的问题与结果............................................. 58

Ⅴ.28从二次互反性到类域理论........................................... 63

Ⅴ.29曲线上的有理点与莫德尔猜想...................................... 68

Ⅴ.30奇异性的消解.......................................................71

Ⅴ.31黎曼–罗赫定理......................................................72

Ⅴ.32Robertson-Seymour定理............................................ 74

Ⅴ.33三体问题........................................................... 76

Ⅴ.34单值化定理......................................................... 80

Ⅴ.35韦伊猜想........................................................... 81
第Ⅵ
部分数学家传记......................................................... 87

Ⅵ.1毕达哥拉斯.......................................................... 87

Ⅵ.2欧几里得.............................................................88

Ⅵ.3阿基米德.............................................................90

Ⅵ.4阿波罗尼乌斯........................................................ 91

Ⅵ.5阿尔花拉子米..................................................... 93

Ⅵ.6斐波那契.............................................................94

Ⅵ.7卡尔达诺.............................................................94

Ⅵ.8庞贝里............................................................... 95

Ⅵ.9维特................................................................. 95

Ⅵ.10斯特凡.............................................................. 97

Ⅵ.11笛卡儿.............................................................. 97

Ⅵ.12费马............................................................... 100

Ⅵ.13帕斯卡.............................................................102

Ⅵ.14牛顿............................................................... 103

Ⅵ.15莱布尼兹.......................................................... 105

Ⅵ.16泰勒............................................................... 108

Ⅵ.17哥德巴赫.......................................................... 109

Ⅵ.18伯努利家族........................................................ 109

Ⅵ.19欧拉............................................................... 112

Ⅵ.20达朗贝尔.......................................................... 116

Ⅵ.21华林............................................................... 118

Ⅵ.22拉格朗日.......................................................... 119

Ⅵ.23拉普拉斯.......................................................... 122

Ⅵ.24勒让德.............................................................124

Ⅵ.25傅里叶.............................................................126

Ⅵ.26高斯............................................................... 128

Ⅵ.27泊松............................................................... 129

Ⅵ.28波尔扎诺.......................................................... 131

Ⅵ.29柯西............................................................... 132

Ⅵ.30莫比乌斯.......................................................... 133

Ⅵ.31罗巴切夫斯基......................................................134

Ⅵ.32格林............................................................... 136

Ⅵ.33阿贝尔.............................................................137

Ⅵ.34鲍耶伊.............................................................139

Ⅵ.35雅可比.............................................................140

Ⅵ.36狄利克雷.......................................................... 142

Ⅵ.37哈密顿.............................................................144

Ⅵ.38德摩根.......................................................... 145

Ⅵ.39刘维尔.............................................................145

Ⅵ.40库默尔.............................................................147

Ⅵ.41伽罗瓦.............................................................148

Ⅵ.42西尔维斯特........................................................ 150

Ⅵ.43布尔............................................................... 152

Ⅵ.44魏尔斯特拉斯......................................................154

Ⅵ.45切比雪夫.......................................................... 155

Ⅵ.46凯莱............................................................... 156

Ⅵ.47厄尔米特.......................................................... 158

Ⅵ.48克罗内克.......................................................... 159

Ⅵ.49黎曼............................................................... 161

Ⅵ.50戴德金.............................................................163

Ⅵ.51马蒂厄.............................................................165

Ⅵ.52约当............................................................... 165

Ⅵ.53李................................................................. 166

Ⅵ.54康托............................................................... 168

Ⅵ.55克利福德.......................................................... 171

Ⅵ.56弗雷格.............................................................172

Ⅵ.57克莱因.............................................................174

Ⅵ.58弗罗贝尼乌斯......................................................176

Ⅵ.59柯瓦列夫斯卡娅................................................... 177

Ⅵ.60伯恩塞德.......................................................... 179

Ⅵ.61庞加莱.............................................................180

Ⅵ.62佩亚诺.............................................................182

Ⅵ.63希尔伯特.......................................................... 183

Ⅵ.64闵可夫斯基........................................................ 186

Ⅵ.65阿达玛.............................................................187

Ⅵ.66弗雷德霍姆........................................................ 189

Ⅵ.67德拉瓦莱布散............................................... 189

.. .
Ⅵ.68豪斯道夫.......................................................... 191

Ⅵ.69嘉当............................................................... 192

Ⅵ.70博雷尔.............................................................194

Ⅵ.71罗素............................................................... 194

Ⅵ.72勒贝格.............................................................196

Ⅵ.73哈代............................................................... 197

Ⅵ.74里斯............................................................... 200

Ⅵ.75布劳威尔.......................................................... 201

Ⅵ.76艾米诺特........................................................ 203

.
Ⅵ.77谢尔品斯基........................................................ 205

Ⅵ.78伯克霍夫.......................................................... 206

Ⅵ.79李特尔伍德........................................................ 208

Ⅵ.80外尔............................................................... 211

Ⅵ.81斯科伦.............................................................213

Ⅵ.82拉马努金.......................................................... 214

Ⅵ.83柯朗............................................................... 216

Ⅵ.84巴拿赫.............................................................218

Ⅵ.85维纳............................................................... 221

Ⅵ.86阿廷............................................................... 223

Ⅵ.87塔尔斯基.......................................................... 225

Ⅵ.88科尔莫戈罗夫......................................................226

Ⅵ.89丘奇............................................................... 229

Ⅵ.90霍奇............................................................... 230

Ⅵ.91冯诺依曼........................................................ 231

.
Ⅵ.92哥德尔.............................................................234

Ⅵ.93韦伊............................................................... 235

Ⅵ.94图灵............................................................... 237

Ⅵ.95鲁宾逊.............................................................239

Ⅵ.96布尔巴基.......................................................... 241
第Ⅶ
部分数学的影响........................................................ 245

Ⅶ.1数学与化学......................................................... 245

Ⅶ.2数理生物学......................................................... 260

Ⅶ.3小波及其应用.......................................................276

Ⅶ.4网络中的流通的数学............................................... 298

Ⅶ.5算法设计的数学.................................................... 311

Ⅶ.6信息的可靠传输.................................................... 322

Ⅶ.7数学与密码......................................................... 335

Ⅶ.8数学和经济学的思考............................................... 349

Ⅶ.9货币的数学......................................................... 370

Ⅶ.10数理统计学........................................................ 381

Ⅶ.11数学与医学统计................................................... 389

Ⅶ.12数学的分析与哲学的分析..........................................399

Ⅶ.13数学与音乐........................................................ 411

Ⅶ.14数学与艺术........................................................ 425
第Ⅷ
部分卷末的话:一些看法............................................... 446

Ⅷ.1解题的艺术......................................................... 446

Ⅷ.2您会问“数学是为了什么?”....................................... 464

Ⅷ.3数学的无处不在.................................................... 482

Ⅷ.4数的意识........................................................... 492

Ⅷ.5数学:一门实验科学................................................ 505

Ⅷ.6对青年数学家的建议............................................... 519

Ⅷ.7数学大事年表.......................................................534

显示全部信息

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

普林斯顿数学指南.第三卷
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon