紧流形上的割补术 第二版

副标题:无

作   者:Wall

分类号:

ISBN:9787040502329

微信扫一扫,移动浏览光盘

简介


本书的一-版于1970年出版,是拓扑流形领域经历硕果默累、令人激动的历史发展时期制高点的标志。1952 年Thom关于横截性和配边理论的工作、1954年Hirzebruch的符号差定理、1956年Milnor发现怪球面这一系列工作将代数拓扑分类引向高维流形的世界。到了 20世纪60年代,通过割补术了解流形的同伦型引发了学者的强烈和广泛的兴趣(初在可微的范畴中),包括了诸如Smale的h-配边理论(1960年), Kervaire 和Minor的怪球面分类(1962年),Browder的Hirzebruch符号差定理的逆,即单连通同伦型中流形的存在性问题(1962年), Barden、 Mazur和Stallings的S-配边定理(1964年), Novikov关于微分流形的有理Pontrjagin 类的拓扑不变性的证明(1965年),Browder和Levine (1966年)与Farrell (1967年)的纤维化定理,Sullivan 的在单连通同伦型内的流形结构集合中的正合序列(1966年), Casson 和Sullivan对逐段线性流形的主猜想的否定证明(1967年), Wall的同伦环形的分类(1969年), Kirby和Siebenmann的拓扑流形的分类理论(1970年)等结果。

本书的一版达到了所设定的五个目标:
建立一个将流形的同伦理论与二次型的代数理论相关联的协调一致的架构,以统一之前的许多结果;
给出对于具有任意基本群的流形的割补障碍理论,包括在同伦型内的流形结构集合中的正合序列,以及许多计算;
推广了从微分和逐段线性范畴到拓扑范畴的割补理论;
描述了1970年之前割补理论的大部分进展;
设置了对于流形的割补分类的后续发展与应用的一个框架。
二版补充了对后续发展的一些注解,更新了参考文献,并添加了大的评论。它仍然是割补理论中极为重要的著作。


目录

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

紧流形上的割补术 第二版
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon