图解深度学习与神经网络:从张量到TensorFlow实现

副标题:无

作   者:张平

分类号:

ISBN:9787121347450

微信扫一扫,移动浏览光盘

简介


290张图 110个可执行的TensorFlow示例程序 算法示例易懂的神经网络深度学习人工智能参考书源代码文件供下载本书适合神经网络、深度学习、TensorFlow 的入门者阅读。

目录


1 深度学习及TensorFlow 简介1
1.1 深度学习. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 TensorFlow 简介及安装. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 基本的数据结构及运算6
2.1 张量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 张量的定义. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Tensor 与Numpy 的ndarray 转换. . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 张量的尺寸. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 图像转换为张量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 随机数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 均匀(平均)分布随机数. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 正态(高斯)分布随机数. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 单个张量的运算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 改变张量的数据类型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 访问张量中某一个区域的值. . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 转置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.4 改变形状. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.5 归约运算:求和、平均值、*(小)值. . . . . . . . . . . . . . . . . 29
2.3.6 *(小)值的位置索引. . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 多个张量之间的运算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 基本运算:加、减、乘、除. . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 乘法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.3 张量的连接. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.4 张量的堆叠. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.5 张量的对比. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5 占位符. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6 Variable 对象. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3 梯度及梯度下降法52
3.1 梯度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 导数计算的链式法则. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.1 多个函数和的导数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2 复合函数的导数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.3 单变量函数的驻点、极值点、鞍点. . . . . . . . . . . . . . . . . . . . . 55
3.2.4 多变量函数的驻点、极值点、鞍点. . . . . . . . . . . . . . . . . . . . . 57
3.2.5 函数的泰勒级数展开. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.6 梯度下降法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 梯度下降法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.1 Adagrad 法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.2 Momentum 法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.3 NAG 法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.4 RMSprop 法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.5 具备动量的RMSprop 法. . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.6 Adadelta 法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.7 Adam 法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.8 Batch 梯度下降. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.9 随机梯度下降. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3.10 mini-Batch 梯度下降. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4 参考文献. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4 回归分析88
4.1 线性回归分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.1.1 一元线性回归. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.1.2 保存和加载回归模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.3 多元线性回归. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 非线性回归分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5 全连接神经网络102
5.1 基本概念. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 计算步骤. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 神经网络的矩阵表达. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4 激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.1 sigmoid 激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.2 tanh 激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.3 ReLU 激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.4 leaky relu 激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.4.5 elu 激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4.6 crelu 激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.4.7 selu 激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4.8 relu6 激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4.9 softplus 激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4.10 softsign 激活函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5 参考文献. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6 神经网络处理分类问题125
6.1 TFRecord 文件. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.1.1 将ndarray 写入TFRecord 文件. . . . . . . . . . . . . . . . . . . . . . . . 125
6.1.2 从TFRecord 解析数据. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.2 建立分类问题的数学模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.2.1 数据类别(标签) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.2.2 图像与TFRecrder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.2.3 建立模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3 损失函数与训练模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.1 sigmoid 损失函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.2 softmax 损失函数. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3.3 训练和评估模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.4 全连接神经网络的梯度反向传播. . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.4.1 数学原理及示例. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.4.2 梯度消失. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7 一维离散卷积168
7.1 一维离散卷积的计算原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.1.1 full 卷积. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.1.2 valid 卷积. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.1.3 same 卷积. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.1.4 full、same、valid 卷积的关系. . . . . . . . . . . . . . . . . . . . . . . . 171
7.2 一维卷积定理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

图解深度学习与神经网络:从张量到TensorFlow实现
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon