Introduction to modern number theory = 现代数论导引 / 2nd ed.

副标题:无

作   者:Yu.I. Manin, A.A. Panchishkin.

分类号:

ISBN:9787030166876

微信扫一扫,移动浏览光盘

简介

  《现代数论导引(第2版)(影印版)》以统一的观点概述数论的现状及其不同分支的发展趋势,由基本问题出发,揭示现代数论的中心思想。主要论题包括类域论的非-Abel-般化、递归计算、丢番图方程、Zeta-函数和L-函数。   《现代数论导引(第2版)(影印版)》新版作了大量修订,内容上也作了扩充,增加了一些新的章节,如怀尔斯对费马大定理的证明,综合不同理论而得到的现代数论的相关技巧。此外,作者还专门增加一章,讲述算术上同调和非交换几何,关于具有多个有理点的簇中点的计数问题的一个报告,质数判定中的多项式时间算法以及其他论题。

目录

partiproblemsandtricks.

elementarynumbertheory

1.1problemsaboutprimes.divisibilityandprimality

1.1.1arithmeticalnotation

1.1.2primesandcompositenumbers

1.1.3thefactorizationtheoremandtheeuclidean

algorithm

1.1.4calculationswithresidueclasses

1.1.5thequadraticreciprocitylawanditsuse

1.1.6thedistributionofprimes

1.2diophantineequationsofdegreeoneandtwo

1.2.1theequationax+by=c

1.2.2lineardiophantinesystems

1.2.3equationsofdegreetwo

1.2.4theminkowski-hasseprincipleforquadraticforms

1.2.5pell'sequation

1.2.6representationofintegersandquadraticformsby

quadraticforms

1.2.7analyticmethods

1.2.8equivalenceofbinaryquadraticforms

.1.3cubicdiophantineequations

1.3.1theproblemoftheexistenceofasolution

1.3.2additionofpointsonacubiccurve

1.3.3thestructureofthegroupofrationalpointsofa

non-singularcubiccurve

1.3.4cubiccongruencesmoduloaprime

1.4approximationsandcontinuedfractions

1.4.1bestapproximationstoirrationalnumbers

1.4.2fareyseries

1.4.3continuedfractions

1.4.4sl2-equivalence

1.4.5periodiccontinuedfractionsandpell'sequation

1.5diophantineapproximationandtheirrationality

1.5.1ideasintheproofthat(3)isirrational

1.5.2themeasureofirrationalityofanumber

1.5.3thethue-siegel-roththeorem,transcendental

numbers,anddiophantineequations

1.5.4proofsoftheidentities(1.5.1)and(1.5.2)

1.5.5therecurrentsequencesanandbn

1.5.6transcendentalnumbersandtheseventhhilbert

problem

1.5.7workofyu.v.nesterenkoon.e.[nes99]

2someapplicationsofelementarynumbertheory

2.1factorizationandpublickeycryptosystems

2.1.1factorizationistime-consuming

2.1.2one-wayfunctionsandpublickeyencryption

2.1.3apublickeycryptosystem

2.1.4statisticsandmassproductionofprimes

2.1.5probabilisticprimalitytests

2.1.6thediscretelogarithmproblemandthe

diffie-hellmankeyexchangeprotocol

2.1.7computingofthediscretelogarithmonelliptic

curvesoverfinitefields(ecdlp)

2.2deterministicprimalitytests

2.2.1adleman-pomerance-rumelyprimalitytest:basicideas

2.2.2gausssumsandtheiruseinprimalitytesting.

2.2.3detaileddescriptionoftheprimalitytest2.2.4primesisinp

2.2.5thealgorithmofm.agrawal,n.kayalandn.saxena

2.2.6practicalandtheoreticalprimalityproving.the

ecpp(ellipticcurveprimalityprovingbyf.morain,see[atmo93b])

2.2.7primesinarithmeticprogression

2.3factorizationoflargeintegers

2.3.1comparativedifficultyofprimalitytestingand

factorization

2.3.2factorizationandquadraticforms

2.3.3theprobabilisticalgorithmclasno

2.3.4thecontinuedfractionsmethod(cfrac)andreal

quadraticfields

2.3.5theuseofellipticcurves

partiiideasandtheories

3inductionandrecursion

3.1elementarynumbertheoryfromthepointofviewoflogic

3.1.1elementarynumbertheory

3.1.2logic

3.2diophantinesets

3.2.1enumerabilityanddiophantinesets

3.2.2diophantinenessofenumerablesets

3.2.3firstpropertiesofdiophantinesets

3.2.4diophantinenessandpell'sequation

3.2.5thegraphoftheexponentisdiophantine

3.2.6diophantinenessandbinomialcoefficients

3.2.7binomialcoefficientsasremainders

3.2.8diophantinenessofthefactorial

3.2.9factorialandeuclideandivision

3.2.10supplementaryresults

3.3partiallyrecursivefunctionsandenumerablesets

3.3.1partialfunctionsandcomputablefunctions

3.3.2thesimplefunctions

3.3.3elementaryoperationsonpartialfunctions

3.3.4partiallyrecursivedescriptionofafunction

3.3.5otherrecursivefunctions

3.3.6furtherpropertiesofrecursivefunctions

3.3.7linkwithlevelsets

3.3.8linkwithprojectionsoflevelsets

3.3.9matiyasevich'stheorem

3.3.10theexistenceofcertainbijections

3.3.11operationsonprimitivelyenumerablesets

3.3.12gsdel'sfunction

3.3.13discussionofthepropertiesofenumerablesets

3.4diophantinenessofasetandalgorithmicundecidability

3.4.1algorithmicundecidabilityandunsolvability

3.4.2sketchproofofthematiyasevichtheorem

arithmeticofalgebraicnumbers

4.1algebraicnumbers:theirrealizationsandgeometry

4.1.1adjoiningrootsofpolynomials

4.1.2galoisextensionsandfrobeniuselements

4.1.3tensorproductsoffieldsandgeometricrealizations

ofalgebraicnumbers

4.1.4units,thelogarithmicmap,andtheregulator

4.1.5latticepointsinaconvexbody

4.1:6deductionofdirichlet'stheoremfromminkowski'slemma

4.2decompositionofprimeideals,dedekinddomains,andvaluations

4.2.1primeidealsandtheuniquefactorizationproperty

4.2.2finitenessoftheclassnumber..

4.2.3decompositionofprimeidealsinextensions

4.2.4decompositionofprimesincyslotomicfields

4.2.5primeideals,valuationsandabsolutevalues

4..3localandglobalmethods

4.3.1p-adicnumbers

4.3.2applicationsofp-adicnumberstosolvingcongruenca

4.3.3thehilbertsymbol

4.3.4algebraicextensionsofqp,andthetatefield

4.3.5normalizedabsolutevalues

4.3.6placesofnumberfieldsandtheproductformula

4.3.7adelesandideles

theringofadeles

theidelegroup

4.3.8thegeometryofadelesandideles

4.4classfieldtheory

4.4.1abelianextensionsofthefieldofrationalnumbers

4.4.2frobeniusautomorphismsofnumberfieldsand

artin'sreciprocitymap

4.4.3thechebotarevdensitytheorem

4.4.4thedecompositionlawand

theartinreciprocitymap

4.4.5thekernelofthereciprocitymap

4.4.6theartinsymbol

4.4.7globalpropertiesoftheartinsymbol

4.4.8alinkbetweentheartinsymbolandlocalsymbols

4.4.9propertiesofthelocalsymbol

4.4.10anexplicitconstructionofabelianextensionsofa

localfield,andacalculationofthelocalsymbol

4.4.11abelianextensionsofnumberfields

4.5galoisgroupinarithetical'problems

4.5.1dividingacircleintonequalparts

4.5.2kummerextensionsandthepowerresiduesymbol

4.5.3galoiscohomology

4.5.4acohomologicaldefinitionofthelocalsymbol

4.5.5thebrauergroup,thereciprocitylawandthe

minkowski-hasseprinciple 5arithmeticofalgebraicvarieties 5.1arithmeticvarietiesandbasicnotionsofalgebraicgeometry

5.1.1equationsandrings

5.1.2thesetofsolutionsofasystem

5.1.3example:thelanguageofcongruences

5.1.4equivalenceofsystemsofequations

5.1.5solutionsask-algebrahomomorphisms

5.1.6thespectrumofaring

5.1.7regularfunctions

5.1.8atopologyonspec(a)

5.1.9schemes

5.1.10ring-valuedpointsofschemes

5.1.11solutionstoequationsandpointsofschemes

5.1.12chevalley'stheorem

5.1.13somegeometricnotions

5.2geometricnotionsinthestudyofdiophantineequations

5.2.1basicquestions

5.2.2geometricclassification

5.2.3existenceofrationalpointsandobstructionstothe

hasseprinciple

5.2.4finiteandinfinitesetsofsolutions

5.2.5numberofpointsofboundedheight

5.2.6heightandarakelovgeometry

5.3ellipticcurves,abelianvarieties,andlineargroups

5.3.1algebraiccurvesandriemannsurfaces

5.3.2ellipticcurves

5.3.3tarecurveanditspointsoffiniteorder

5.3.4themordell-weiltheoremandgaloiscohomology

5.3.5abelianvarietiesandjacobians

5.3.6thejacobianofanalgebraiccurve

5.3.7siegel'sformulaandtamagawa'measure

5.4diophantineequationsandgaloisrepresentations

5.4.1thetaremoduleofanellipticcurve

5.4.2thetheoryofcomplexmultiplication

5.4.3charactersofl-adicrepresentations

5.4.4representationsinpositivecharacteristic

5.4.5thetatemoduleofanumberfield

5.5thetheoremoffairingsandfinitenessproblemsindiophantinegeometry

5.5.1reductionofthemordellconjecturetothefinitenessconjecture

5.5.2thetheoremofshafarevichonfinitenessforellipticcurves

5.5.3passagetoabelianvarieties

5.5.4finitenessproblemsandtatesconjecture

5.5.5reductionoftheconjecturesoftatetothefinitenesspropertiesorisogenies5.5.6thefaltings-arakelovheight

5.5.7heightsunderisogeniesandconjecturetzetafunctionsandmodularforms

6.1zetafunctionsofarithmeticschemes

6.1.1zetafunctionsofarithmeticschemes

6.1.2analyticcontinuationofthezetafunctions

6.1.3schemesoverfinitefieldsanddeligne'stheorem

6.1.4zetafunctionsandexponentialsums

6.2l-functions,thetheoryoftateandexpliciteformulae

6.2.1l-functionsofrationalgaloisrepresentations

6.2.2theformalismofartin

6.2.3example:thededekindzetafunction

6.2.4heckecharactersandthetheoryoftare

6.2.5explicitformulae

6.2.6theweilgroupanditsrepresentations

6.2.7zetafunctions,l-functionsandmotives

6.3modularformsandeulerproducts

6.3.1alinkbetweenalgebraicvarietiesandl-functions

6.3.2classicalmodularforms

6.3.3application:tatecurveandsemistableellipticcurves

6.3.4analyticfamiliesofellipticcurvesandcongruence

subgroups

6.3.5modularformsforcongruencesubgroups

6.3.6hecketheory

6.3.7primitiveforms

6.3.8weil'sinversetheorem

6,4modularformsandgaloisrepresentations

6.4.1ramanujan'scongruenceandgaloisrepresentations

6.4.2alinkwitheichler-shimura'sconstruction

6.4.3theshimura-taniyama-weilconjecture

6.4.4theconjectureofbirchandswinnerton-dyer

6.4.5theartinconjectureandcuspforms

theartinconductor

6.4.6modularrepresentationsoverfinitefields

6.5automorphicformsandthelanglandsprogram

6.5.1arelationbetweenclassicalmodularformsand

representationtheory

6.5.2automorphicl-functions

furtheranalyticpropertiesofautomorphicl-functions

6.5.3thelanglandsfunctorialityprinciple

6.5.4automorphicformsandlanglandsconjectures

fermat'slasttheoremandfamiliesofmodularforms

7.1shimura-taniyama-weilconjectureandreciprocitylaws

7.1.1problemofpierredefermat(1601-1665)

7.1.2g.lam6'smistake

7.1.3ashortoverviewofwiles'marvelousproof

7.1.4thestwconjecture

7.1.5aconnectionwiththequadraticreciprocitylaw

7.1.6acompleteproofofthestwconjecture

7.1.7modularityofsemistableellipticcurves

7.1.8structureoftheproofoftheorem7.13(semistable

stwconjecture)

7.2theoremoflanglands-tunnelland

modularitymodulo3

7.2.1galoisrepresentations:preparation

7.2.2modularitymodulop

7.2.3passagefromcuspformsofweightonetocuspforms

ofweighttwo..

7.2.4preliminaryreviewofthestagesoftheproofoftheorem7.13onmodularity

7.3modularityofgaloisrepresentationsanduniversaldeformationrings

7.3.1galoisrepresentationsoverlocalnoetherianalgebras

7.3.2deformationsofgaloisrepresentations

7.3.3modulargaloisrepresentations

7.3.4admissibledeformationsandmodulardeformations

7.3.5universaldeformationrings

7.4wiles'maintheoremandisomorphismcriteriaforlocalrings

7.4.1strategyoftheproofofthemaintheorem7.33

7.4.2surjectivityof

7.4.3constructionsoftheuniversaldeformationring

7.4.4asketchofaconstructionoftheuniversalmodulardeformationringt2

7.4.5universalityandthechebotarevdensitytheorem

7.4.6isomorphismcriteriaforlocalrings

7.4.7j-structuresandthesecondcriterionofisomorphismoflocalrings

7.5wiles'inductionstep:applicationofthecriteriaandgaloiscohomology

7.5.1wiles'inductionstepintheproofofmaintheorem7.33

7.5.2aformularelatingpreparation

7.5.3theselmergroupand

7.5.4infinitesimaldeformations

7.5.5deformationsoftype

7.6therelativeinvariant,themaininequalityandtheminimalcase

7.6.1therelativeinvariant

7.6.2themaininequality

7.6.3theminimalcase

7.7endofwiles'proofandtheoremonabsoluteirreducibility

7.7.1theoremonabsoluteirreducibility

7.7.2fromp=3top=5

7.7.3familiesofellipticcurveswithfixede

7.7.4theendoftheproofthemostimportantinsightspartiiianalogiesandvisionsiii-0introductorysurveytopartiii:motivationsanddescription

iii.1analogiesanddifferencesbetweennumbersandfunctions:point,archimedeanpropertiesetc

iii.1.1cauchyresidueformulaandtheproductformula

iii.l.2arithmeticvarieties

iii.l.3infinitesimalneighborhoodsoffibers

iii,.2arakelovgeometry,fiberovercycles,greenfunctions

(d'apresgillet-soule)

iii.2.1arithmeticchowgroups

iii.2.2arithmeticintersectiontheoryandarithmetic

riemann-rochtheorem

iii.2.3geometricdescriptionoftheclosedfibersatinfinity

iii.3-functions,localfactorsatserre'sf-factors

iii.3.1archimedeanl-factors

iii.3.2deninger'sformulae

iii.4aguessthatthemissinggeometricobjectsare

noncommutativespaces

iii.4.1typesandexamplesofnoncommutativespaces,and

howtoworkwiththem.noncommutativegeometry

andarithmetic

isomorphismofnoncommutativespacesandmoritaequivalence

thetoolsofnoncommutativegeometry

iii.4.2generalitiesonspectraltriples

iii.4.3contentsofpartiii:descriptionofpartsofthisprogram

8arakelovgeometryandnoncommutativegeometry

8.1schottkyuniformizationandarakelovgeometry

8.1.1motivationsandthecontextoftheworkof

consani-marcolli

8.1.2analyticconstructionofdegeneratingcurvesover

completelocalfields

8.1.3schottkygroupsandnewperspectivesinarakelov

geometry

schottkyuniformizationandschottkygroups

fuchsianandschottkyuniformization

8.1.4hyperbolichandlebodies

geodesicsinr

8.1.5arakelovgeometryandhyperbolicgeometry

arakelovgreenfunction

crossratioandgeodesics

differentialsandschottkyuniformization

greenfunctionandgeodesics

8.2cohomologicalconstructions

8.2.1archimedeancohomology

operators

sl(2,r)representatious

8.2.2localfactorandarchimedeancohomology

8.2.3cohomologicalconstructions

8.2.4zetafunctionofthespecialfiberandreidemeister

torsion

8.3spectraltriples,dynamicsandzetafunctions

8.3.1adynamicaltheoryatinfinity

8.3.2homotopyquotion

8.3.3filtration

8.3.4hilbertspaceandgrading

8.3.5cuntz-kriegeralgebra

spectraltriplesforschottkygroups

8.3.6arithmeticsurfaces:homologyandcohomology

8.3.7archimedeanfactorsfromdynamics

8.3.8adynamicaltheoryformumfordcurves

genustwoexample

8.3.9cohomologyof

8.3.10spectraltriplesandmumfordcurves

8.4reductionmod

8.4.1homotopyquotientsand"reductionmodinfinity"

8.4.2baum-connesmap

references

index...


已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

Introduction to modern number theory = 现代数论导引 / 2nd ed.
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon