Numerical optimization = 数值最优化 /
副标题:无
作 者:Jorge Nocedal, Stephen J. Wright.
分类号:
ISBN:9787030166753
微信扫一扫,移动浏览光盘
简介
本书作者现任美国西北大学教授,多种国际权威杂志的主编、副主编。作者根据在教学、研究和咨询中的经验,写了这本适合学生和实际工作者的书。本书提供连续优化中大多数有效方法的全面的最新的论述。每一章从基本概念开始,逐步阐述当前可用的最佳技术。.
本书强调实用方法,包含大量图例和练习,适合广大读者阅读,可作为工程、运筹学、数学、计算机科学以及商务方面的研究生教材,也可作为该领域的科研人员和实际工作人员的手册。总之,作者力求本书阅读性强,内容丰富,论述严谨,能揭示数值最优化的美妙本质和实用价值。...
目录
introduction.
mathematicalformulation
example:atransportationproblem
continuousversusdiscreteoptimization
constrainedandunconstrainedoptimization
globalandlocaloptimization
stochasticanddeterministicoptimization
optimizationalgorithms
convexity
notesandreferences
fundamentalsofunconstrainedoptimization
2.1whatisasolution?
recognizingalocalminimum
nonsmoothproblems
2.2overviewofalgorithms
twostrategies:linesearchandtrustregion
searchdirectionsforlinesearchmethods
modelsfortrust-regionmethods
scaling
ratesofconvergence
.r-ratesofconvergence
notesandreferences
exercises
linesearchmethods
3.1steplength
thewolfeconditions
thegoldsteinconditions
sufficientdecreaseandbacktracking
3.2convergenceoflinesearchmethods
3.3rateofconvergence.
convergencerateofsteepestdescent
quasi-newtonmethods
newton'smethod
coordinatedescentmethods
3.4step-lengthselectionalgorithms
interpolation
theinitialsteplength
alinesearchalgorithmforthewolfeconditions
notesandreferences
exercises
trust-regionmethods
outlineofthealgorithm
4.1thecauchypointandrelatedalgorithms
thecauchypoint
improvingonthecauchypoint
thedoglegmethod
two-dimensionalsubspaceminimization
steihaug'sapproach..
4.2usingnearlyexactsolutionstothesubproblem
characterizingexactsolutions
calculatingnearlyexactsolutions
thehardcase
proofoftheorem4.3
4.3globalconvergence
reductionobtainedbythecauchypoint
convergencetostationarypoints
convergenceofalgorithmsbasedonnearlyexactsolutions
4.4otherenhancements
scaling
non-euclideantrustregions
notesandreferences
exercises
conjugategradientmethods
5.1thelinearconjugategradientmethod
conjugatedirectionmethods
basicpropertiesoftheconjugategradientmethod
apracticalformoftheconjugategradientmethod
rateofconvergence
preconditioning
practicalpreconditioners
5.2nonlinearconjugategradientmethods
thefletcher-reevesmethod
thepolak-ribi~remethod
quadraticterminationandrestarts
numericalperformance
behaviorofthefletcher-reevesmethod
globalconvergence
notesandreferences
exercises
practicalnewtonmethods
6.1inexactnewtonsteps
6.2linesearchnewtonmethods
linesearchnewton-cgmethod
modifiednewton'smethod
6.3hessianmodifications
eigenvaluemodification
addingamultipleoftheidentity
modifiedcholeskyfactorization
gershgorinmodification
modifiedsymmetricindefinitefactorization
6.4trust-regionnewtonmethods
newton-doglegandsubspace-minimizationmethods
accuratesolutionofthetrust-regionproblem
trust-regionnewton-cgmethod
preconditioningthenewton-cgmethod
localconvergenceoftrust-regionnewtonmethods
notesandreferences
exercises
calculatingderivatives
7.1finite-differencederivativeapproximations
approximatingthegradient
approximatingasparsejacobian
approximatingthehessian;
approximatingasparsehessian
7.2automaticdifferentiation
anexample
theforwardmode
thereversemode
vectorfunctionsandpartialseparability
calculatingjacobiansofvectorfunctions
calculatinghessians:forwardmode
calculatinghessians:reversemode
currentlimitations
notesandreferences
exercises
quasi-newtonmethods
8.1thebfgsmethod
propertiesofthebfgsmethod
implementation
8.2thesr1method
propertiesofsr1updating
8.3thebroydenclass
properties9fthebroydenclass
8.4convergenceanalysis
globalconvergenceofthebfgsmethod
superlinearconvergenceofbfgs
convergenceanalysisofthesr1method
notesandreferences
exercises
large-scalequasi-newtonandpartiallyseparableoptimization
9.1limited-memorybfgs
relationshipwithconjugategradientmethods
9.2generallinaited-memoryupdating
compactrepresentationofbfgsupdating
sr1matrices
unrollingtheupdate
9.3sparsequasi-newtonupdates
9.4partiallyseparablefunctions
asimpleexample
internalvariables
9.5invariantsubspacesandpartialseparability
sparsityvs.partialseparability
grouppartialseparability
9.6algorithmsforpartiallyseparablefunctions
exploitingpartialseparabilityinnewton'smethod
quasi-newtonmethodsforpartiallyseparablefunctions
notesandreferences
exercises
10nonlinearleast-squaresproblems
10.1background
modeling,regression,statistics
linearleast-squaresproblems
10.2algorithmsfornonlinearleast-squaresproblems
thegauss-newtonmethod
thelevenberg-marquardtmethod
implementationofthelevenberg-marquardtmethod
large-residualproblems
large-scaleproblems
10.3orthogonaldistanceregression
notesandreferences
exercises..
11nonlinearequations
11.1localalgorithms
newton'smethodfornonlinearequations
inexactnewtonmethods
broyden'smethod
tensormethods
11.2practicalmethods
meritfunctions
linesearchmethods
trust-regionmethods
11.3continuation/homotopymethods
motivation
practicalcontinuationmethods
notesandreferences
exercises
12theoryofconstrainedoptimization
localandglobalsolutions
smoothness
12.1examples
asingleequalityconstraint
asingleinequalityconstraint
twoinequalityconstraints
12.2first-orderoptimalityconditions
statementoffirst-ordernecessaryconditions
sensitivity
12.3derivationofthefirst-orderconditions
feasiblesequences
characterizinglimitingdirections:constraintqualifications
introducinglagrangemultipliers
proofoftheorem12.1
12.4second-orderconditions
second-orderconditionsandprojectedhessians
convexprograms
12.5otherconstraintqualifications
12.6ageometricviewpoint
notesandreferences
exercises
13linearprogramming:thesimplexmethod
linearprogramming
13.1optimalityandduality
optimalityconditions
thedualproblem
13.2geometryofthefeasibleset
basicfeasiblepoints
verticesofthefeasiblepolytope
13.3thesimplexmethod
outlineofthemethod
finiteterminationofthesimplexmethod
asinglestepofthemethod
13.4linearalgebrainthesimplexmethod
13.5other(important)details
pricingandselectionoftheenteringindex.
startingthesimplexmethod
degeneratestepsandcycling
13.6wheredoesthesimplexmethodfit?
notesandreferences
exercises
14linearprogramming:interior-pointmethods
14.1primal-dualmethods
outline
thecentralpath
aprimal-dualframework
path-followingmethods
14.2apracticalprimal-dualalgorithm
solvingthelinearsystems
14.3otherprimal-dualalgorithmsandextensions
otherpath-followingmethods
potential-reductionmethods
extensions
14.4analysisofalgorithm14.2
notesandreferences
exercises
15fundamentalsofalgorithrasfornonlinearconstrainedoptimization
initialstudyofaproblem
15.1categorizingoptimizationalgorithms
15.2eliminationofvariables
simpleeliminationforlinearconstraints
generalreductionstrategiesforlinearconstraints
theeffectofinequalityconstraints
15.3measuringprogress:meritfunctions
notesandreferences
exercises
16quadraticprogramming
anexample:portfoliooptimization
16.1equality-constrainedquadraticprograms
propertiesofequality-constrainedqps
16.2solvingthekktsystem
directsolutionofthekktsystem
range-spacemethod
null-spacemethod
amethodbasedonconjugacy
16.3inequality-constrainedproblems
optimalityconditionsforinequality-constrainedproblems
degeneracy
16.4active-setmethodsforconvexqp
specificationoftheactive-setmethodforconvexqp
anexample
furtherremarksontheactive-setmethod
finiteterminationoftheconvexqpalgorithm
updatingfactorizations
16.5active-setmethodsforindefiniteqp
illustration
choiceofstartingpoint
failureoftheactive-setmethod
detectingindefinitenessusingthelblrfactorizafion
16.6thegradient-projectionmethod
cauchypointcomputation
subspaceminimization
16.7interior-pointmethods
extensionsandcomparisonwithactive-setmethods.
16.8duality
notesandreferences
exercises
17penalty,barrier,andaugmentedlagrangianmethods
17.1thequadraticpenaltymethod
motivation
algorithmicframework
convergenceofthequadraticpenaltyfunction
17.2thelogarithmicbarriermethod
propertiesoflogarithmicbarrierfunctions
algorithmsbasedonthelog:barrierfunction
propertiesofthelog-barrierfunctionandframework17.2
handlingequalityconstraints
relationshiptoprimal-dualmethods
17.3exactpenaltyfunctions
17.4augmentedlagrangianmethod
motivationandalgorithmframework
extensiontoinequalityconstraints
propertiesoftheaugmentedlagrangian
practicalimplementation
17.5sequentiallinearlyconstrainedmethods
notesandreferences
exercises
18sequentialquadraticprogramming
18.1localsqpmethod
sqpframework
inequalityconstraints
iqpvs.eqp
18.2previewofpracticalsqpmethods
18.3stepcomputation
equalityconstraints
inequalityconstraints
18.4thehessianofthequadraticmodel
fullquasi-newtonapproximations
hessianofaugmentedlagrangian
reduced-hessianapproximations
18.5meritfunctionsanddescent
l8.6alinesearchsqpmethod
18.7reduced-hessiansqpmethods
somepropertiesofreduced-hessianmethods
updatecriteriaforreduced-hessianupdating
changesofbases
apracticalreduced-hessianmethod
18.8trust-regionsqpmethods
approachi:shiftingtheconstraints
approachii:twoellipticalconstraints
approachiii:se1qp(sequentialglquadraticprogramming)
18.9apracticaltrust-regionsqpalgorithm
18.10rateofconvergence
convergencerateofreduced-hessianmethods
18.11themaratoseffect
second-ordercorrection
watchdog(nonmonotone)strategy
notesandreferences
exercises
abackgroundmaterial
a.1elementsofanalysis,geometry,topology
topologyoftheeuclideanspacern
continuityandlimits
derivatives
directionalderivatives
meanvaluetheorem
implicitfunctiontheorem
geometryoffeasiblesets
ordernotation..
root-findingforscalarequations
a.2elementsoflinearalgebra
vectorsandmatrices
norms
subspaces
eigenvalues,eigenvectors,andthesingular-valuedecomposition
determinantandtrace
matrixfactorizations:cholesky,lu,qr
sherman-morrison-woodburyformula
interlacingeigenvaluetheorem
erroranalysisandfloating-pointarithmetic
conditioningandstability...
mathematicalformulation
example:atransportationproblem
continuousversusdiscreteoptimization
constrainedandunconstrainedoptimization
globalandlocaloptimization
stochasticanddeterministicoptimization
optimizationalgorithms
convexity
notesandreferences
fundamentalsofunconstrainedoptimization
2.1whatisasolution?
recognizingalocalminimum
nonsmoothproblems
2.2overviewofalgorithms
twostrategies:linesearchandtrustregion
searchdirectionsforlinesearchmethods
modelsfortrust-regionmethods
scaling
ratesofconvergence
.r-ratesofconvergence
notesandreferences
exercises
linesearchmethods
3.1steplength
thewolfeconditions
thegoldsteinconditions
sufficientdecreaseandbacktracking
3.2convergenceoflinesearchmethods
3.3rateofconvergence.
convergencerateofsteepestdescent
quasi-newtonmethods
newton'smethod
coordinatedescentmethods
3.4step-lengthselectionalgorithms
interpolation
theinitialsteplength
alinesearchalgorithmforthewolfeconditions
notesandreferences
exercises
trust-regionmethods
outlineofthealgorithm
4.1thecauchypointandrelatedalgorithms
thecauchypoint
improvingonthecauchypoint
thedoglegmethod
two-dimensionalsubspaceminimization
steihaug'sapproach..
4.2usingnearlyexactsolutionstothesubproblem
characterizingexactsolutions
calculatingnearlyexactsolutions
thehardcase
proofoftheorem4.3
4.3globalconvergence
reductionobtainedbythecauchypoint
convergencetostationarypoints
convergenceofalgorithmsbasedonnearlyexactsolutions
4.4otherenhancements
scaling
non-euclideantrustregions
notesandreferences
exercises
conjugategradientmethods
5.1thelinearconjugategradientmethod
conjugatedirectionmethods
basicpropertiesoftheconjugategradientmethod
apracticalformoftheconjugategradientmethod
rateofconvergence
preconditioning
practicalpreconditioners
5.2nonlinearconjugategradientmethods
thefletcher-reevesmethod
thepolak-ribi~remethod
quadraticterminationandrestarts
numericalperformance
behaviorofthefletcher-reevesmethod
globalconvergence
notesandreferences
exercises
practicalnewtonmethods
6.1inexactnewtonsteps
6.2linesearchnewtonmethods
linesearchnewton-cgmethod
modifiednewton'smethod
6.3hessianmodifications
eigenvaluemodification
addingamultipleoftheidentity
modifiedcholeskyfactorization
gershgorinmodification
modifiedsymmetricindefinitefactorization
6.4trust-regionnewtonmethods
newton-doglegandsubspace-minimizationmethods
accuratesolutionofthetrust-regionproblem
trust-regionnewton-cgmethod
preconditioningthenewton-cgmethod
localconvergenceoftrust-regionnewtonmethods
notesandreferences
exercises
calculatingderivatives
7.1finite-differencederivativeapproximations
approximatingthegradient
approximatingasparsejacobian
approximatingthehessian;
approximatingasparsehessian
7.2automaticdifferentiation
anexample
theforwardmode
thereversemode
vectorfunctionsandpartialseparability
calculatingjacobiansofvectorfunctions
calculatinghessians:forwardmode
calculatinghessians:reversemode
currentlimitations
notesandreferences
exercises
quasi-newtonmethods
8.1thebfgsmethod
propertiesofthebfgsmethod
implementation
8.2thesr1method
propertiesofsr1updating
8.3thebroydenclass
properties9fthebroydenclass
8.4convergenceanalysis
globalconvergenceofthebfgsmethod
superlinearconvergenceofbfgs
convergenceanalysisofthesr1method
notesandreferences
exercises
large-scalequasi-newtonandpartiallyseparableoptimization
9.1limited-memorybfgs
relationshipwithconjugategradientmethods
9.2generallinaited-memoryupdating
compactrepresentationofbfgsupdating
sr1matrices
unrollingtheupdate
9.3sparsequasi-newtonupdates
9.4partiallyseparablefunctions
asimpleexample
internalvariables
9.5invariantsubspacesandpartialseparability
sparsityvs.partialseparability
grouppartialseparability
9.6algorithmsforpartiallyseparablefunctions
exploitingpartialseparabilityinnewton'smethod
quasi-newtonmethodsforpartiallyseparablefunctions
notesandreferences
exercises
10nonlinearleast-squaresproblems
10.1background
modeling,regression,statistics
linearleast-squaresproblems
10.2algorithmsfornonlinearleast-squaresproblems
thegauss-newtonmethod
thelevenberg-marquardtmethod
implementationofthelevenberg-marquardtmethod
large-residualproblems
large-scaleproblems
10.3orthogonaldistanceregression
notesandreferences
exercises..
11nonlinearequations
11.1localalgorithms
newton'smethodfornonlinearequations
inexactnewtonmethods
broyden'smethod
tensormethods
11.2practicalmethods
meritfunctions
linesearchmethods
trust-regionmethods
11.3continuation/homotopymethods
motivation
practicalcontinuationmethods
notesandreferences
exercises
12theoryofconstrainedoptimization
localandglobalsolutions
smoothness
12.1examples
asingleequalityconstraint
asingleinequalityconstraint
twoinequalityconstraints
12.2first-orderoptimalityconditions
statementoffirst-ordernecessaryconditions
sensitivity
12.3derivationofthefirst-orderconditions
feasiblesequences
characterizinglimitingdirections:constraintqualifications
introducinglagrangemultipliers
proofoftheorem12.1
12.4second-orderconditions
second-orderconditionsandprojectedhessians
convexprograms
12.5otherconstraintqualifications
12.6ageometricviewpoint
notesandreferences
exercises
13linearprogramming:thesimplexmethod
linearprogramming
13.1optimalityandduality
optimalityconditions
thedualproblem
13.2geometryofthefeasibleset
basicfeasiblepoints
verticesofthefeasiblepolytope
13.3thesimplexmethod
outlineofthemethod
finiteterminationofthesimplexmethod
asinglestepofthemethod
13.4linearalgebrainthesimplexmethod
13.5other(important)details
pricingandselectionoftheenteringindex.
startingthesimplexmethod
degeneratestepsandcycling
13.6wheredoesthesimplexmethodfit?
notesandreferences
exercises
14linearprogramming:interior-pointmethods
14.1primal-dualmethods
outline
thecentralpath
aprimal-dualframework
path-followingmethods
14.2apracticalprimal-dualalgorithm
solvingthelinearsystems
14.3otherprimal-dualalgorithmsandextensions
otherpath-followingmethods
potential-reductionmethods
extensions
14.4analysisofalgorithm14.2
notesandreferences
exercises
15fundamentalsofalgorithrasfornonlinearconstrainedoptimization
initialstudyofaproblem
15.1categorizingoptimizationalgorithms
15.2eliminationofvariables
simpleeliminationforlinearconstraints
generalreductionstrategiesforlinearconstraints
theeffectofinequalityconstraints
15.3measuringprogress:meritfunctions
notesandreferences
exercises
16quadraticprogramming
anexample:portfoliooptimization
16.1equality-constrainedquadraticprograms
propertiesofequality-constrainedqps
16.2solvingthekktsystem
directsolutionofthekktsystem
range-spacemethod
null-spacemethod
amethodbasedonconjugacy
16.3inequality-constrainedproblems
optimalityconditionsforinequality-constrainedproblems
degeneracy
16.4active-setmethodsforconvexqp
specificationoftheactive-setmethodforconvexqp
anexample
furtherremarksontheactive-setmethod
finiteterminationoftheconvexqpalgorithm
updatingfactorizations
16.5active-setmethodsforindefiniteqp
illustration
choiceofstartingpoint
failureoftheactive-setmethod
detectingindefinitenessusingthelblrfactorizafion
16.6thegradient-projectionmethod
cauchypointcomputation
subspaceminimization
16.7interior-pointmethods
extensionsandcomparisonwithactive-setmethods.
16.8duality
notesandreferences
exercises
17penalty,barrier,andaugmentedlagrangianmethods
17.1thequadraticpenaltymethod
motivation
algorithmicframework
convergenceofthequadraticpenaltyfunction
17.2thelogarithmicbarriermethod
propertiesoflogarithmicbarrierfunctions
algorithmsbasedonthelog:barrierfunction
propertiesofthelog-barrierfunctionandframework17.2
handlingequalityconstraints
relationshiptoprimal-dualmethods
17.3exactpenaltyfunctions
17.4augmentedlagrangianmethod
motivationandalgorithmframework
extensiontoinequalityconstraints
propertiesoftheaugmentedlagrangian
practicalimplementation
17.5sequentiallinearlyconstrainedmethods
notesandreferences
exercises
18sequentialquadraticprogramming
18.1localsqpmethod
sqpframework
inequalityconstraints
iqpvs.eqp
18.2previewofpracticalsqpmethods
18.3stepcomputation
equalityconstraints
inequalityconstraints
18.4thehessianofthequadraticmodel
fullquasi-newtonapproximations
hessianofaugmentedlagrangian
reduced-hessianapproximations
18.5meritfunctionsanddescent
l8.6alinesearchsqpmethod
18.7reduced-hessiansqpmethods
somepropertiesofreduced-hessianmethods
updatecriteriaforreduced-hessianupdating
changesofbases
apracticalreduced-hessianmethod
18.8trust-regionsqpmethods
approachi:shiftingtheconstraints
approachii:twoellipticalconstraints
approachiii:se1qp(sequentialglquadraticprogramming)
18.9apracticaltrust-regionsqpalgorithm
18.10rateofconvergence
convergencerateofreduced-hessianmethods
18.11themaratoseffect
second-ordercorrection
watchdog(nonmonotone)strategy
notesandreferences
exercises
abackgroundmaterial
a.1elementsofanalysis,geometry,topology
topologyoftheeuclideanspacern
continuityandlimits
derivatives
directionalderivatives
meanvaluetheorem
implicitfunctiontheorem
geometryoffeasiblesets
ordernotation..
root-findingforscalarequations
a.2elementsoflinearalgebra
vectorsandmatrices
norms
subspaces
eigenvalues,eigenvectors,andthesingular-valuedecomposition
determinantandtrace
matrixfactorizations:cholesky,lu,qr
sherman-morrison-woodburyformula
interlacingeigenvaluetheorem
erroranalysisandfloating-pointarithmetic
conditioningandstability...
Numerical optimization = 数值最优化 /
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×