Real analysis = 实分析 / 3rd ed.

副标题:无

作   者:H.L. Royden.

分类号:

ISBN:9787111139126

微信扫一扫,移动浏览光盘

简介

本书为数学与统计学专业研究生实分析课程的基础教材,1963年出版了第1版,1987年修订的第3版在前两版的基础上进行了改写和补充,增加了可变测度一章。在过去的40我年中,本书已被国外众多著名大学(如斯坦福大学、哈佛大学等)采用。 本书是一本优秀的教材,主要分三部分:第一部分为实变函数论,第二部分为抽象空间,第三部分为一般测度与积分论。书中不仅包含数学定理和定义,而且还提出了挑战性的问题,以便读者更深入地理解书中的内容。本书的题材是数学教学的共同基础,包含许多数学家的研究成果。

目录

prologue to the student 1

i set theory 6

1 introduction 6

2 functions 9

3 unions, intersections, and complements 12

4 algebras of sets 17

5 the axiom of choice and infinite direct products 19

6 countable sets 20

7 relations and equivalences 23

8 partial orderings and the maximal principle 24

9 well ordering and the countable ordinals 26

part one

theory of functions of a

real variable

2 the real number system 31

1 axioms for the real numbers 31

2 the natural and rational numbers as subsets of r 34

3 the extended real numbers 36

4 sequences of real numbers 37

5 open and closed sets of real numbers 40

.6 continuous functions 47

7 borel sets 52

3 lebesgue measure 54

i introduction 54

2 outer measure 56

3 measurable sets and lebesgue measure 58

*4 a nonmeasurable set 64

5 measurable functions 66

6 littlewood's three principles 72

4 the lebesgue integral 75

1 the riemann integral 75

2 the lebesgue integral of a bounded function over a set of finite

measure 77

3 the integral of a nonnegative function 85

4 the general lebesgue integral 89

*5 convergence in measure 95

s differentiation and integration 97

1 differentiation of monotone functions 97

2 functions of bounded variation 102

3 differentiation of an integral 104

4 absolute continuity 108

5 convex functions 113

6 the classical banach spaces 118

1 the lp spaces 118

2 the minkowski and holder inequalities 119

3 convergence and completeness 123

4 approximation in lp 127

5 bounded linear functionals on the lp spaces 130

part two

abstract spaces

7 metric spaces 139

1 introduction 139

2 open and closed sets 141

3 continuous functions and homeomorphisms 144

4 convergence and completeness 146

5 uniform continuity and uniformity 148

6 subspaces 151

7 compact metric spaces 152

8 baire category 158

9 absolute gs 164

10 the ascoli-arzela theorem 167

8 topological spaces ltl

i fundamental notions 171

2 bases and countability 175

3 the separation axioms and continuous real-valued

functions 178

4 connectedness 182

5 products and direct unions of topological spaces 184

*6 topological and uniform properties 187

*7 nets 188

9 compact and locally compact spaces 190

i compact spaces 190

2 countable compactness and the bolzano-weierstrass

property 193

3 products of compact spaces 196

4 locally compact spaces 199

5 a-compact spaces 203

*6 paracompact spaces 204

7 manifolds 206

*8 the stone-cech compactification 209

9 the stone-weierstrass theorem 210

10 banach spaces 217

i introduction 217

2 linear operators 220

3 linear functionals and the hahn-banach theorem 222

4 the closed graph theorem 224

5 topological vector spaces 233

6 weak topologies 236

7 convexity 239

8 hilbert space 245

part three

general measure and integration

theory

11 measure and integration 253

1 measure spaces 253

2 measurable functions 259

3 integration 263

4 general convergence theorems 268

5 signed measures 270

6 the radon-nikodym theorem 276

7 the lp-spaces 282

12 measure and outer measure 288

1 outer measure and measurability 288

2 the extension theorem 291

3 the lebesgue-stieltjes integral 299

4 product measures 303

5 integral operators 313

*6 inner measure 317

*7 extension by sets of measure zero 325

8 caratheodory outer measure 326

9 hausdorff measure 329

13 measure and topology 331

1 baire sets and borel sets 331

2 the regularity of baire and borel measures 337

3 the construction of borel measures 345

4 positive linear functionals and borel measures 352

5 bounded linear functionals on c(x) 355

14 invariant measures 361

1 homogeneous spaces 361

2 topological equicontinuity 362

3 the existence ofinvariant measures 365

4 topological groups 370

5 group actions and quotient spaces 376

6 unicity ofinvariant measures 378

7 groups ofdiffeomorphisms 388

15 mappings of measure spaces 392

1 point mappings and set mappings 392

2 boolean algebras 394

3 measure algebras 398

4 borel equivalences 401

5 borel measures on complete separable metric spaces 406

6 set mappings and point mappings on complete separable

metric spaces 412

7 the isometries of lp 415

16 the daniell integral 419

1 introduction 419

2 the extension theorem 422

3 uniqueness 427

4 measurability and measure 429

bibliography 435

index of symbols 437

subject index 439


已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

Real analysis = 实分析 / 3rd ed.
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon