微信扫一扫,移动浏览光盘
简介
《线性代数(第2版)(英文影印版)》是kenneth hoffman《线性代数》第2版。本版在第1版的基础上作了一些增加和改进,尤其是在典范式和内积空间的讲述上做了较大的改变。作者从线性代数的最基本知识开始讲述了典范型、内积空间、双线性型、复内积空间以及谱理论。书中许多定理的证明非常完整,受到广大数学学者的赞赏,并且非常适合初学者学习理解。对偶空间和张量在《线性代数(第2版)(英文影印版)》同时讲解,这也是《线性代数(第2版)(英文影印版)》的一大特色。
目录
Chapter 1. Linear Equations
1.1. Fields
1.2. Systems of Linear Equations
1.3. Matrices and Elementary Row Operations
1.4. Row-Reduced Echelon Matrices
1.5. Matrix Multiplication
1.6. Invertible Matrices
Chapter 2. Vector Spaces
2.1. Vector Spaces
2.2. Subspaces
2.3. Bases and Dimension
2.4. Coordinates
2.5. Summary of Row-Equivalence
2.6. Computations Concerning Subspaces
Chapter 3. Linear Transformations
3.1. Linear Transformations
3.2. The Algebra of Linear Transformations
3.3. Isomorphism
3.4. Representation of Transformations by Matrices
3.5. Linear Functionals
3.6. The Double Dual
3.7. The Transpose of a Linear Transformation
Chapter 4. Polynomials
4.1. Algebras
4.2. The Algebra of Polynomials
4.3. Lagrange Interpolation
4.4. Polynomial Ideals
4.5. The Prime Factorization of a Polynomial
Chapter 5. Determinants
5.1. Commutative Rings
5.2. Determinant Functions
5.3. Permutations and the Uniqueness of Determinants
5.4. Additional Properties of Determinants
5.5. Modules
5.6. Multilinear Functions
5.7. The Grassman Ring
Chapter 6. Elementary Canonical Forms
6.1. Introduction
6.2. Characteristic Values
6.3. .Annihilating Polynomials
6.4. Invariant Subspaces
6.5. simultaneous Triangulation; Simultaneous Diagonalization
6.6. Direct-Sum Decompositions
6.7. Invarlant Direct Sums
6.8. The Primary Decomposition Theorem
Chapter 7. The Rational and Jordan Forms
7.1. Cyclic Subspaces and Annihilators
7.2. Cyclic Decompositions and the Rational Form
7.3. The Jordan Form
7.4. Computation of Invarlant Factors
7.5. Summary; Semi-Simple Operators
Chapter 8. Inner Product Spaces
8.1. Inner Products
8.2. Inner Product Spaces
8.3. Linear Functional] and Adjoints
8.4. Unitary Operators
8.5. Normal Operators
Chapter 9. Operators on Inner Product Spaces
9.1. Introduction
9.2. Forms on Inner Product Spaces
9.3. Positive Forms
9.4. More on Forms
9.5. Spectral Theory
9.6. Further Properties of Normal Operators
Chapter 10. Bilinear Forms
10.1. Bilinear Forms
10.2. Symmetric Bilinear Forms
10.3. Skew-SymmetricBilinear Forms
10.4 Groups Preserving Bilinear Forms
Appendix
A.1. Sets
A.2. Functions
A.3. Equivalence Relations
A.4. Quotient Spaces
A.5. Equivalence Relations in Linear Algebra
A.6. The Axiom of Choice
Bibliography
lndes
1.1. Fields
1.2. Systems of Linear Equations
1.3. Matrices and Elementary Row Operations
1.4. Row-Reduced Echelon Matrices
1.5. Matrix Multiplication
1.6. Invertible Matrices
Chapter 2. Vector Spaces
2.1. Vector Spaces
2.2. Subspaces
2.3. Bases and Dimension
2.4. Coordinates
2.5. Summary of Row-Equivalence
2.6. Computations Concerning Subspaces
Chapter 3. Linear Transformations
3.1. Linear Transformations
3.2. The Algebra of Linear Transformations
3.3. Isomorphism
3.4. Representation of Transformations by Matrices
3.5. Linear Functionals
3.6. The Double Dual
3.7. The Transpose of a Linear Transformation
Chapter 4. Polynomials
4.1. Algebras
4.2. The Algebra of Polynomials
4.3. Lagrange Interpolation
4.4. Polynomial Ideals
4.5. The Prime Factorization of a Polynomial
Chapter 5. Determinants
5.1. Commutative Rings
5.2. Determinant Functions
5.3. Permutations and the Uniqueness of Determinants
5.4. Additional Properties of Determinants
5.5. Modules
5.6. Multilinear Functions
5.7. The Grassman Ring
Chapter 6. Elementary Canonical Forms
6.1. Introduction
6.2. Characteristic Values
6.3. .Annihilating Polynomials
6.4. Invariant Subspaces
6.5. simultaneous Triangulation; Simultaneous Diagonalization
6.6. Direct-Sum Decompositions
6.7. Invarlant Direct Sums
6.8. The Primary Decomposition Theorem
Chapter 7. The Rational and Jordan Forms
7.1. Cyclic Subspaces and Annihilators
7.2. Cyclic Decompositions and the Rational Form
7.3. The Jordan Form
7.4. Computation of Invarlant Factors
7.5. Summary; Semi-Simple Operators
Chapter 8. Inner Product Spaces
8.1. Inner Products
8.2. Inner Product Spaces
8.3. Linear Functional] and Adjoints
8.4. Unitary Operators
8.5. Normal Operators
Chapter 9. Operators on Inner Product Spaces
9.1. Introduction
9.2. Forms on Inner Product Spaces
9.3. Positive Forms
9.4. More on Forms
9.5. Spectral Theory
9.6. Further Properties of Normal Operators
Chapter 10. Bilinear Forms
10.1. Bilinear Forms
10.2. Symmetric Bilinear Forms
10.3. Skew-SymmetricBilinear Forms
10.4 Groups Preserving Bilinear Forms
Appendix
A.1. Sets
A.2. Functions
A.3. Equivalence Relations
A.4. Quotient Spaces
A.5. Equivalence Relations in Linear Algebra
A.6. The Axiom of Choice
Bibliography
lndes
Linear algebra = 线性代数 / 2nd ed.
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×