Multidimensional diffusion processes = 多维扩散过程 /
副标题:无
作 者:Daniel W. Stroock, S. R. Srinivasa Varadhan.
分类号:
ISBN:9787506292627
微信扫一扫,移动浏览光盘
简介
马尔科夫过程和Ito方法已经在扩散理论中发展很成功。Strook-Varadhan的这本书,是从作者的很有历史意义的1969年的论文发展而来的,表述了这本书问题方法是一个更有力的,从某种程度上更本质的方法学习本学科的基础。
目录
Frequently Used Notation
Chapter 0 Introduction
Chapter 1 Preliminary Material:Extension Theorems,Martingales,and Compactness
1.0 Introduction
1.1 Weak Convergence.Conditional Probability Distributions and Extension Theorems
1.2 Martingales.
1.3 The Space c([0,0);R)
1.4 Martingales and Compactness
1.5 Exercises
Chapter 2 Markov Processes,Regularity of Their Sample Paths,and the Wiener Measure.
2.1 Regularity of Paths
2.2MarkOVProcesses andTransitionProbabilities
2.3 Wiener Measure
2.4 Exercises
Chapter 3 ParabolicPartialDifferentialEquations
3.1 The Maximum Principle.
3.2 Existence Theorems
3.3 Exercises
Chapter 4 The Stochastic Calculus of Di斤usion Theory
4.1 Brownian Morion,
4.2 Equivalence ofCertain Martingales
4.3 It6 Processes and Stochastic Integration
4.4 It’s Formula
4.5 It Processes as Stochastic Integrals
4.6 ExerciSes
Chapter 5 Stochastic Dilierential Equations
5.0 Introduction
5.1 Existence and Uniqueness
5.2 On the Lipschitz Condition
5.3Equivalence ofDifferentChoices ofthe SquareRoot
5.4 Exercises
Chapter 6 The Martingale Formulation
6.0 Introduction
6.1 Existence
6.2 Uniqueness:Markov Property
6.3 Uniqueness:Some Examples.
6.4 Cameron.Martin.Girsanov Formula
6.5 Uniqueness:Random Time Change
6.6 Uniqueness:Localization.
6.7 Exercises
Chapter 7 Uniqueness
7.0 Introduction
7.1 Uniqueness:Local Case
7.2 Uniqueness:Global Case
7.3 ExereiSes
Chapter 8 It’S Uniqueness and Uniqueness to the Martingale Problem
8.0 Introduction.
8.I Results ofYamada and Watanabe
8.2 More 0n Itb Uniqueness
8.3 Exercises
Chapter 9 Some Estimates on the Transition Probability Functions
9.0 Introduetion
9.1 The Inhomogeneous Case
9.2 The Homogeneous Case
Chapter 10 Explosion
10.0Introduction
10.1 Locally Bounded Cocfficients
10.2ConditionsforExplosion andNon-Explosion
10.3 Exercises.
Chapter 11 Limit Theorems
11.0 Introduction
11.1 Convergence ofDiffusion Process
11.2 Convergence ofMarkov Chains to Diffusions
11.3ConvergenceofDiffusionProcesses:EllipticCase
11.4 Convergence ofTransition Probability Densities
11.5 ExerciSeS
Chapter 12 The Non—Unique Case
12.0 Introduction
12.1 Existence ofMeasurable Choices
12.2 Markov Selections
12.3 Reconstruction ofAll Solutions
12.4 Exercises
Appendix
A.0 Introduction
A.1 L Estimates for Some Singular Integral Operators
A.2 Proofofthe Main Estimate
A.3 Exercises
Bibliographical Remarks
Bibliography
Index
Chapter 0 Introduction
Chapter 1 Preliminary Material:Extension Theorems,Martingales,and Compactness
1.0 Introduction
1.1 Weak Convergence.Conditional Probability Distributions and Extension Theorems
1.2 Martingales.
1.3 The Space c([0,0);R)
1.4 Martingales and Compactness
1.5 Exercises
Chapter 2 Markov Processes,Regularity of Their Sample Paths,and the Wiener Measure.
2.1 Regularity of Paths
2.2MarkOVProcesses andTransitionProbabilities
2.3 Wiener Measure
2.4 Exercises
Chapter 3 ParabolicPartialDifferentialEquations
3.1 The Maximum Principle.
3.2 Existence Theorems
3.3 Exercises
Chapter 4 The Stochastic Calculus of Di斤usion Theory
4.1 Brownian Morion,
4.2 Equivalence ofCertain Martingales
4.3 It6 Processes and Stochastic Integration
4.4 It’s Formula
4.5 It Processes as Stochastic Integrals
4.6 ExerciSes
Chapter 5 Stochastic Dilierential Equations
5.0 Introduction
5.1 Existence and Uniqueness
5.2 On the Lipschitz Condition
5.3Equivalence ofDifferentChoices ofthe SquareRoot
5.4 Exercises
Chapter 6 The Martingale Formulation
6.0 Introduction
6.1 Existence
6.2 Uniqueness:Markov Property
6.3 Uniqueness:Some Examples.
6.4 Cameron.Martin.Girsanov Formula
6.5 Uniqueness:Random Time Change
6.6 Uniqueness:Localization.
6.7 Exercises
Chapter 7 Uniqueness
7.0 Introduction
7.1 Uniqueness:Local Case
7.2 Uniqueness:Global Case
7.3 ExereiSes
Chapter 8 It’S Uniqueness and Uniqueness to the Martingale Problem
8.0 Introduction.
8.I Results ofYamada and Watanabe
8.2 More 0n Itb Uniqueness
8.3 Exercises
Chapter 9 Some Estimates on the Transition Probability Functions
9.0 Introduetion
9.1 The Inhomogeneous Case
9.2 The Homogeneous Case
Chapter 10 Explosion
10.0Introduction
10.1 Locally Bounded Cocfficients
10.2ConditionsforExplosion andNon-Explosion
10.3 Exercises.
Chapter 11 Limit Theorems
11.0 Introduction
11.1 Convergence ofDiffusion Process
11.2 Convergence ofMarkov Chains to Diffusions
11.3ConvergenceofDiffusionProcesses:EllipticCase
11.4 Convergence ofTransition Probability Densities
11.5 ExerciSeS
Chapter 12 The Non—Unique Case
12.0 Introduction
12.1 Existence ofMeasurable Choices
12.2 Markov Selections
12.3 Reconstruction ofAll Solutions
12.4 Exercises
Appendix
A.0 Introduction
A.1 L Estimates for Some Singular Integral Operators
A.2 Proofofthe Main Estimate
A.3 Exercises
Bibliographical Remarks
Bibliography
Index
Multidimensional diffusion processes = 多维扩散过程 /
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×