Silicon VLSI technology : fundamentals, practice and modeling = 硅超大规模集成电路工艺技术 : 理论...

副标题:无

作   者:James D. Plummer, Michael Deal, Peter B. Griffin著.

分类号:

ISBN:9787505386389

微信扫一扫,移动浏览光盘

简介

国外电子与通信教材。 本书是美国斯坦福大学电气工程系“硅超大规模集成电路制造工艺”课程所使用的教材,该课程是为电气工程系微电子学专业的四年级本科生及一年级研究生开设的一门专业课。本书最大的特点是,不仅详细介绍了硅超大规模集成电路芯片生产制造相关的实际工艺技术,而且还着重讲解了这些工艺技术背后的科学原理。特别是对于每一步单项工艺技术,书中都通过工艺模型和工艺模拟软件,非常形象直观地给出了实际工艺过程的物理图像。同时全书还对每一步单项工艺技术所要用到的测量方法做了详细的介绍,对于工艺技术与工艺模型的未来发展趋势也做了必要的分析讨论。另外,本书每一章后面都附有相关内容的参考文献,同时还附有大量习题。 对于我国高等院校微电子学专业的教师及学生,本书是一本不可多得的优秀教材和教学参考书,并可供相关领域的工程技术人员学习参考。

目录

chapter 1 lntroduction and histerial perspeetive

1.1 introduction

1.2 integrated circuits and the planar ptocess--key inventions that made

it aii possible

1.3 semiconductors

1.4 semiconductor devices

1.4.l pn diodes

1.4.2 mos transistors

1.4.3 bipolar junction transistors

1.5 semiconductor technoloy families

1.6 modern scientific discovery-experiments theory, and

computer simulation

1.7 the plan for this book

1.8 summary of key ideas

1.9 references

1.10 problems

chapter 2 modem cmos technelogy

2.1 introduction

2.2 cmos proeess flow

2.2.1 the beginning-choosing a substrate

. 2.2.2 active region formation

2.2.3 process option for device isolation-shallow trench isolation

2.2.4 n and p well formation

2.2.5 process options for adive region and well formation

2.2.6 gate formation.

2.2.7 tip or extension (ldd) formation

2.2.8 source/drain formation

2.2.9 contact and local interconned formation

2.2.10 multilevel metal formation

2.3 summary of key ideas

2.4 probems

chapter 3 crystal growth, wafer fabrication and basic properties

of silicon wafers

3.1 introduction

3.2 historical development and basic concepts

3.2.1 crystal structure

3.2.2 defects in crystals

3.2.3 raw materials and purification

3.2.4 czochralski and float-zone crystal growth methods

3.2.5 wafer preparation and specilication

3.3 manufacturing methods and equipment

3.4 measurement methods

3.4.1 electrical measurements

3.4.1.1 hot point probe

3.4.1.2 sheet resistance

3.4.1.3 hall effect measurements

3.4.2 physical measurements

3.4.2.1 defect etches

3.4.2.2 fourier transform infrared spectroscopy (ftir)

3.4.2.3 electron microscopy

3.5 models and simulation

3.5.1 czochralski crystal growth

3.5.2 dopant incorporation during cz crystal growth

3.5.3 zone refiniog and fz growth

3.5.4 point defects

3.5.5 oxygen in silicon

3.5.6 carbon in silicon

3.5.7 simulation

3.6 limits and future trends in technologies and models

3.7 summary of key ideas

3.8 references

3.9 problems

chapter 4 semiconductor manufacturing--clean rooms wafer cleaning

and gettering

4.1 introduction

4.2 historical development and basic concepts

4.2.1 level l contamination reduction: clean fadories

4.2.2 level 2 contamination reduction: wafer cleaning

4.2.3 lsvel 3 contamination reduction: gettering

4.3 manufacturing methods and equipment

4.3.1 lsvel 1 contamination reduction: clean factories

4.3.2 level 2 contamination reduction: wafer cleaning

4.3.3 level 3 contamination reduction: gettering.

4.4 measurement methods

4.4.1 level 1 contamination reduction: clean factories

4.4.2 level 2 contamination reduction: wafer cleaning

4.4.3 level 3 contamination reduction: gettering

4.5 models and simulation

4.5.1 level 1 contamination reduction: clean factories

4.5.2 level 2 contamination reduction: wafer cleaning

4.5.3 level 3 contamination reduction: gettering

4.5.3.1 step 1: making the metal atoms mobile

4.5.3.2 step 2: metal diffusion to the gettering site

4.5.3.3 step 3: trapping the metal atoms at tbe gettering site

4.6 limits and future trends in technologies and models

4.7 summary of key ideas

4.7 references

4.9 problems
chapter 5 lithography

5.1 introduction

5.2 historical development and basic concepts

5.2.1 light sources

5.2.2 wafer exposure systems

5.2.2.1 optics basics-ray tracing and diffraction

5.2.2.2 projection systems (fraunhofer diffraction)

5.2.2.3 contact and proximity systems (fresnel diffraction)

5.2.3 photoresists

5.2.3.1 g-line and i-line resists

5.2.3.2 deep ultraviolet (duv) resists

5.2.3.3 basic properties and characterization of resists

5.2.4 mask engineering-optical proximity correction and phase shifiting

5.3 manufacturing methods and equipment

5.3.1 wafer exposure systems

5.3.2 photoresists

5.4 measurement methods

5.4.1 measurement of mask features and defects

5.4.2 measurement of resist patterns

5.4.3 measurement of etched featrnes

5.5 models and simulation

5.5.1 wafer exposure systems

5.5.2 optical intensity pattern in the photoresist

5.5.3 photoresist exposme

5.5.3.1 g-line and i-line dnq resists

5.5.3.2 duv resists

5.5.4 postexposure bake (peb)

5.5.4.1 g-line and i-line dnq resists

5.5.4.2 duv resists

5.5.5 photoresist developing

5.5.6 photoresist postbake

5.5.7 advanced mask engineering

5.6 limits and future trends in technologies and models
5.6.1 electron beam lithography

5.6.2 x-ray lithography

5.6.3 advanced mask engineering

5.6.4 new resists

5.7 sammary of key ideas

5.8 references

5.9 problems

chapter 6 thermal oxidation and the si/sio2 interface

6.1 introduction

6.2 historical development and basic concepts

6.3 manufacturing methods and equipment
6.4 measarement methods

6.4.1 physical measurements

6.4.2 optical measurements

6.4.3 electrical measurements-the mos capacitor

6.5 models and simulation

6.5.1 first-order planar growth kinetic -the linear parabolic model

6.5.2 other models for planar oxidation kinetics

6.5.3 thin oxide sio2 growth kinetics

6.5.4 dependence of growth kinetics on pressure

6.5.5 dependence of growth kinetics on crystal orientation

6.5.6 mixed ambient growth kinetics

6.5.7 2d sio2 growth kinetics

6.5.8 advanced point defect based models for oxidation

6.5.9 substrate doping effects

6.5.10 polysilicon oxidation

6.5.11 si3n4 growth and oxidation kinetics

6.5.12 silicide oxidation

6.5.13 si/sio2 interface charges

6.5.14 complete oxidation module simulation

6.6 limits and future trends in technologies and models

6.7 summary of key ideas

6.8 references

6.9 ptoblems

chapter 7 dopant diffusion

7.1 introduction

7.2 historical development and basic concepts

7.2.1 dopant solid solubility

7.2.2 diffusion from a macroscopic viewpoint

7.2.3 analytic solutions of the difusion equation

7.2.4 gaussian solution in an infinite medium

7.2.5 gaussian solution near a surface

7.2.6 error-function solution in an infinite medium

7.2.7 error-function solution near a surface

7.2.8 intrinsic diffusion coefficients of dopants in silicon

7.2.9 effect of successive diffusion steps

7.2.10 design and evaluation of diffused layers

7.2.11 summary of basic diffusion concepts

7.3 manufacturing methods and equipment

7.4 measurement methods

7.4.1 sims

7.4.2 spreading resistance

7.4.3 sheet resistance

7.4.4 capacitance voltage

7.4.5 tem cross section

7.4.6 2d electrical measurements using scanning probe microscopy

7.4.7 inverse electrical measmements

7.5 models and simulation

7.5.1 numerical solutions of the diffusion equation

7.5.2 modifications to fick's laws to account for electric field effects

7.5.3 modifications to fick's laws to account for

concentration-dependent diffusion

7.5.4 segregation

7.5.5 interfacial dopant pileup

7.5.6 summary of the macroscopic diffusion approach

7.5.7 tbe physical basis for diffusion at an atomic scale

7.5.8 oxidation-enhanced or -retarded diffusion

7.5.9 dopant diffusion occurs by both i and v

7.5.10 activation energy for self-diffusion and dopant ditffusion

7.5.11 dopant-defect interactions

7.5.12 chemical equilibrium formulation for dopant-defect interactions

7.5.13 simplified expression for modeling

7.5.14 charge state effects

7.6 limits and future trends in technologies and models

7.6.1 doping methods
7.6.2 advaoced dopant profile modeling-fully kinetic description

of dopant-defect interactions

7.7 summary of key ideas

7.8 references

7.9 problems

chapter 8 lon implantation

8.1 introduction

8.2 historical development and basic concepts

8.2.1 implants in real silicon-the role of the crystal structure

8.3 manufacturing methods and equipment

8.3.1 high-energy implants

8.3.2 ultralow energy implants

8.3.3 lon beam heating

8.4 measurement methods

8.5 models and simulations

8.5.1 nuclear stopping

8.5.2 nonlocal electronic stopping

8.5.3 local electronic stopping

8.5.4 total stopping powers

8.5.5 damage production

8.5.6 damage annealing

8.5.7 solid-phase epitaxy

8.5.8 dopant activation

8.5.9 transient-enhanced diffusion

8.5.1o atomic-level understanding of ted

8.5.11 effects on devices

8.6 limits and future trends in technologies and models

8.7 summary of key ideas

8.8 references

8.9 problems

chapter 9 thin film deposition

9.1 introduction

9.2 historical development and basic concepts

9.2.1 chemical vapor deposition (cvd)
9.2.1.1 atmospheric pressure chemical vapor deposition (apcvd)

9.2.1.2 low-pressure chemical vapor deposition (lpcvd)

9.2.1.3 plasma-enhanced chemical vapor deposition (pecvd)

9.2.1.4 high-density plasma chemical vapor deposition

(hdpcvd)

9.2.2 physical vapor deposition (pvd)

9.2.2.1 evaporation

9.2.2.2 sputter deposition

9.3 manufacturing methods

9.3.1 epitaxial silicon deposition

9.3.2 polycrystalline silicon deposition

9.3.3 silicon nitride deposition

9.3.4 silicon dioxide deposition

9.3.5 a1 deposition

9.3.6 ti and ti-w deposition

9.3.7 w deposition

9.3.8 tisi2 and wsi2 deposition

9.3.9 tin deposition

9.3.10 cu deposition

9.4 measurement methods

9.5 models and simulation

9.5.1 models for deposition simulations

9.5.1.1 models in physically based simulators such as speedie

9.5.1.2 models for different types of deposition systems

9.5.1.3 comparing cvd and pvd and typical parameter values

9.5.2 simulations of deposition using a physically based

simulator, speedie

9.5.3 other deposition simulations

9.6 limits and future trends in technologies and models

9.7 summary of key ideas

9.8 references

9.9 problems

chapter le etching

10.1 introduction

10.2 historical development and basic concepts

10.2.1 wet etching

10.2.2 plasma etching

10.2.2.1 plasma etching mechanisms

10.2.2.2 types of plasma etch systems

10.2.2.3 summary of plasma systems and mechanisms

10.3 manufacturing methods

10.3.1 plasma etching conditions and issues

10.3.2 plasma etch methods for various films

10.3.2.1 plasma etching silicon dioxide

10.3.2.2 plasma etching polysilicon

10.3.2.3 plasma etching aluminum

10.4 measurement methods.

10.5 modek and simulation.

10.5.1 models for etching simulation

10.5.2 etching models----linear etch model

10.5.3 etching models----saturation/adsorption model for

lon-enbanced etching

10.5.4 etching models----more advanced models

10.5.5 other etching simulation

10.6 limits and future trends in technologies and models

10.7 summary of key ideas

10.8 references

10.9 problems

chapter 11 back-end teehnology
11.1 introduction

11.2 historical development and basic concepts

11.2.1 contacts

11.2.2 interconnects and vias

11.2.3 dielectrics

11.3 manufacturing methods and equipment

11.3.1 silicided gates and source/drain regions

11.3.2 first-level dielectric processing

11.3.3 contact formation

11.3.4 global interconnects

11.3.5 imd deposition and planarization

11.3.6 via formation

11.3.7 final steps

11.4 measurement methods

11.4.1 morphological measurements

11.4.2 electrical measurements

11.4.3 chemical and stractural measurements

11.4.4 mechanical measurements

11.5 models and simulation

11.5.1 silicide formation

11.5.2 chemical-mechanical polishing

11.5.3 reflow

11.5.4 grain growth

11.5.5 diffusion in polycrystalline materials

11.5.6 electromigration

11.6 limits and future trends in technologies and models

11.7 summary of key ideas

11.8 references

11.9 problems

appendices

a.1 standard prefixes

a.2 useful conversions

a.3 physical constants

a.4 physical properties of silicon

a.5 properties of insulators used in silicon technology

a.6 color chart for deposited si3n4 films observed perpendicularly under

daylight fluorescent lighting

a.7 color chart for thermally grown sio2 films observed perpendicularly

under daylight fluorescent lighting

a.8 irwin curves
a.9 error function

a.10 list of important symbols

a.11 list of common acronyms

a.12 tables in text

a.13 answers to selected problems

index


已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

Silicon VLSI technology : fundamentals, practice and modeling = 硅超大规模集成电路工艺技术 : 理论...
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon