副标题:无

作   者:

分类号:

ISBN:9783642195044

微信扫一扫,移动浏览光盘

简介

Morphology鈥揚roperty Relationship in Rubber-Based Nanocomposites: Some Recent Developments, by A. K. Bhowmick, M. Bhattacharya, S. Mitra, K. Dinesh Kumar, P. K. Maji, A. Choudhury, J. J. George and G. C. Basak; * Rubber鈥揅lay Nanocomposites: Some Recent Results, by Amit Das, De-Yi Wang, Klaus Werner St枚ckelhuber, Ren茅 Jurk, Juliane Fritzsche, Manfred Kl眉ppel and Gert Heinrich; * Surface Modification of Fillers and Curatives by Plasma Polymerization for Enhanced Performance of Single Rubbers and Dissimilar Rubber/Rubber Blends, by J. W. M. Noordermeer, R. N. Datta, W. K. Dierkes, R. Guo, T. Mathew, A. G. Talma, M. Tiwari and W. van Ooij; * Recent Developments on Thermoplastic Elastomers by Dynamic Vulcanization, by R. Rajesh Babu and Kinsuk Naskar; * PTFE-Based Rubber Composites for Tribological Applications, by M. S. Khan and G. Heinrich

目录

Advances in Polymer Sciences Also Available Electronically 7
Aims and Scope 8
Preface 9
Reference 10
Contents 11
Morphology-Property Relationship in Rubber-Based Nanocomposites: Some Recent Developments 13
1 Introduction 16
2 Morphology Development During Preparation of Nanocomposites 19
2.1 Understanding Morphology and Its Characterization in Polymer Nanocomposites 19
2.2 Influence of Mean-Field-Lattice-Based Theory on the Morphology Development of Polymer-Based Nanocomposites 20
2.3 Important Characterization Techniques for Study of Morphology 22
2.4 Development of Characteristic Morphologies During Preparation 27
2.4.1 Solution and Melt Mixing 27
2.4.2 In Situ Preparation and Solution Mixing 28
2.4.3 Mixing in an Extruder 29
2.4.4 Effect of Curing Techniques and Ingredients 30
2.4.5 Latex, Melt, and Latex-in-Melt Mixing 30
3 Influence of Morphology on Properties 32
3.1 Rheological and Processing Behavior 32
3.2 Mechanical Properties 37
3.3 Dynamic Mechanical Analysis 50
3.3.1 Transitions in Rubber-Based Nanocomposites 50
3.3.2 Effect of Frequency and Strain 54
3.3.3 Time-Temperature Superposition 55
3.4 Thermal Properties 56
3.4.1 Thermal Degradation Behavior of Rubber-Based Nanocomposites 56
3.4.2 Mechanism of Degradation 61
3.5 Electrical Properties and EMI Shielding 63
3.6 Barrier Properties 65
3.7 Adhesion 69
3.7.1 Acrylic Rubber Adhesion 69
3.7.2 Liquid Rubber Adhesion 70
3.7.3 Autohesive Tack 72
3.7.4 Polyurethane Elastomer Adhesion 73
4 New Insights into Understanding Morphology-Property Relationships 74
4.1 Quantification of Nanoassembly Exfoliation 74
4.2 New Interface Area Function to Investigate Swelling Behavior and Young麓s Modulus in Nanocomposites 76
4.3 Role of Polymer-Solvent and Clay-Solvent Interaction Parameters on the Morphology Development of Polymer-Based Nanocomposit 84
4.4 Multiscale Modeling and Simulation of Polymer Nanocomposites 87
5 Conclusions 89
References 89
Rubber-Clay Nanocomposites: Some Recent Results 96
1 Introduction 97
2 Preparation and Properties 100
2.1 Carboxylated Nitrile Rubber 100
2.2 Acrylonitrile Butadiene Rubber 105
2.3 Chloroprene Rubber 110
2.4 Styrene Butadiene Rubber 115
3 Characteristics of the Nanocomposites 120
3.1 Dynamic Mechanical Properties 120
3.1.1 Temperature Dependencies 120
3.1.2 Strain Dependencies 123
3.2 Dielectric Analysis 125
3.3 XRD Studies 128
3.4 Transmission Electron Microscopy 131
3.5 Infrared Spectroscopy 134
4 Effect of Vulcanization Ingredients 136
4.1 Effect of Sulfur and Peroxide Curing 136
4.2 Effect of Accelerator Type 139
4.3 Effect of Stearic Acid 140
5 Clay in Rubber Blends 146
5.1 CR/EPDM 148
5.1.1 Preparation 148
5.1.2 Characterization 148
5.2 CR/XNBR 154
5.2.1 Preparation 155
5.2.2 Characterization 156
6 Rubber-Anionic Clay Nanocomposites 167
6.1 Synthesis 168
6.2 Preparation and Characterization of Rubber-LDH Nanocomposites 168
7 Conclusion 174
References 175
Surface Modification of Fillers and Curatives by Plasma Polymerization for Enhanced Performance of Single Rubbers and Dissimilar Rubber/Rubber Blends 178
1 Introduction 180
2 Plasma Polymerization 181
2.1 Hot and Cold Plasma 181
2.2 Mechanism of Plasma Polymerization 183
2.3 Operational Parameters 186
2.4 Plasma Generation 188
2.5 Surface Modification of Powder Substrates by Plasma 189
2.6 Plasma Modification of Fillers for Rubber Applications 190
3 Plasma Polymerization onto Silica and Carbon Black Fillers, and onto Sulfur Vulcanization Agent 192
3.1 Plasma Reactors 192
3.2 Materials 194
3.3 Process Conditions for Plasma Deposition 194
3.3.1 Silica 194
3.3.2 Carbon Black 194
3.3.3 Sulfur 196
3.4 Characterization Techniques for Plasma-Modified Fillers and Sulfur 196
3.4.1 Immersion Test and Water Penetration Measurements: Hydrophobicity 196
3.4.2 Thermogravimetric Analysis: Amount of Deposited Material 196
3.4.3 Time-of-Flight Secondary Ion Mass Spectroscopy: Chemical Structure of the Film 197
3.4.4 Scanning Electron Microscopy: Morphology 197
3.5 Characterization of Plasma-Coated Powders 197
3.5.1 Silica 197
3.5.2 Carbon Black 201
3.5.3 Sulfur 202
4 Polyacetylene-, Thiophene- and Pyrrole-Coated Silica in Rubber 208
4.1 Silica in Pure S-SBR 208
4.1.1 Compound Preparation 208
4.1.2 Compound Characterization Methods 208
4.1.3 Effect of Plasma-Coated Silica on SBR Compound Properties 210
4.1.4 Discussion 213
4.2 Silica in a S-SBR/EPDM Blend 214
4.2.1 Compound Preparations 214
4.2.2 Effect of Plasma-Coated Silica on SBR/EPDM Blend Properties 214
4.2.3 Discussion 217
5 Polyacetylene-Coated Carbon Black in Rubber 218
5.1 Carbon Black in Pure S-SBR 218
5.1.1 Compound Preparations 218
5.1.2 Effect of Acetylene-Plasma-Coated Carbon Black on SBR Compound Properties 218
5.1.3 Discussion 220
5.2 Carbon Black in a SBR/EPDM Blend 220
5.2.1 Compound Preparation 220
5.2.2 Effect of Carbon Blacks on the SBR/EPDM Blend Properties 221
5.2.3 Discussion 222
6 Polyacetylene-Coated Sulfur in Rubber 224
6.1 Sulfur in Pure S-SBR 224
6.1.1 Compound Preparation 224
6.1.2 Effect of Unmodified and Plasma-Coated Sulfur on the SBR Compound Properties 224
6.1.3 Discussion 225
6.2 Sulfur in a S-SBR/EPDM Blend 225
6.2.1 Compound Preparation 225
6.2.2 Effect of Encapsulated Sulfur on the SBR/EPDM Blend Properties 226
6.2.3 Discussion 226
7 Conclusions 227
References 228
Recent Developments on Thermoplastic Elastomers by Dynamic Vulcanization 230
1 Introduction: Concept of Dynamic Vulcanization 231
1.1 Morphology 231
1.2 Rheology 233
1.3 Deformation Behavior 233
1.4 Production and Processing 234
2 Various Types of TPVs: The State of the Art 235
2.1 PP/EPDM TPVs 235
2.2 TPVs Based on PP/Ethylene-伪-Olefin 239
2.2.1 Reinforcement Mechanism 244
2.3 TPVs from Miscible Blends 245
2.4 Super TPVs 247
2.5 Nanofilled TPVs 249
2.6 Oil-Extended TPVs 250
2.7 Foamed TPVs 251
2.8 Electron Beam Crosslinked TPVs 254
3 Concluding Remarks 256
References 256
PTFE-Based Rubber Composites for Tribological Applications 259
1 Introduction 261
2 Polytetrafluoroethylene 263
2.1 Polymerization, Manufacturing, and Properties 263
2.1.1 PTFE Micropowders 265
2.2 Radiation-Induced Modification of PTFE 265
2.3 Chemically Coupled PTFE-Based Compounds 267
2.4 State of the Art: PTFE for Tribological Applications 268
3 PTFE-Based EPDM Rubber Composites 272
3.1 Electron Modification of PTFE Powder and Sample Preparation 272
3.1.1 Thermal Crosslinking of EPDM and CR 274
3.1.2 Electron Irradiation Crosslinking of EPDM 274
3.2 Characterization of PTFE Powder 274
3.3 Peroxide-Crosslinked Rubber Composites 278
3.3.1 Influence of PTFE Loading 279
Cure Analysis 279
Compatibility and Dispersion Behavior 280
Physical Properties 283
Friction and Wear Properties 284
Analysis of the Wear Mechanism 288
Relationship Between Mechanical Properties and Wear Properties 289
3.3.2 Influence of Irradiation Dose 290
Curing Characteristics 291
Mechanical Properties 291
Friction and Wear Properties 293
Wear Mechanism 296
3.4 Electron-Beam-Crosslinked Rubber Composites 298
3.4.1 Characterization with Respect to Chemical Coupling 298
Optimization of Crosslinking Dose 298
Physical and Dynamic Mechanical Properties 299
Compatibility and Dispersion 301
3.4.2 Characterization of Friction and Wear Behavior 303
Friction Behavior 303
Wear Behavior 304
4 Newly Developed PTFE-Coupled Chloroprene Composites 305
4.1 Rheometric Characterization 307
4.2 Compatibility and Dispersion 308
4.3 Mechanical Properties 309
4.3.1 Experimental Setup 311
4.4 Chemical Coupling Investigations 314
4.5 Possible Chemical Coupling Mechanism 316
5 Summary 316
References 319
Index 321

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon