简介
Successfully bringing MEMS-based products to market hinges on engineering the component to have sufficient reliability for the intended application, yet the reliability and qualification methodology for MEMS based products is not widely understood. Companies that have a deep understanding of MEMS reliability because of specific high volume manufacturing experience generally view the details of a reliability program as a competitive advantage and are reluctant to share it. MEMS Reliability focuses on the reliability and manufacturability of MEMS at a fundamental product engineering level by addressing process development and characterization, material property characterization, failure mechanisms and physics of failure (PoF), accelerated testing and lifetime prediction, design strategies for improving yield, design for reliability (DfR), packaging and testing. Drawing upon years of practical experience and using numerous examples and illustrative applications, Allyson Hartzell, Mark da Silva, and Herbert Shea cover: 鈥?How to design & manufacture MEMS components for reliability by focusing on basic tools such as reliability statistics, CAD methodologies, FMEA, tools & instruments for failure analysis, and product development methodologies. 鈥?The different types of failure modes for silicon and metal-based MEMS, including failures originating in the design and manufacturing phases, and in-use failures (electrical, mechanical, and environmental) and how to avoid them. 鈥?The testing and qualification procedures for MEMS reliability and the specific test protocols for accelerating specific MEMS- failures, leading to enhanced reliability understanding and accurate lifetime prediction. MEMS Reliability will be of interest to engineers,researchers, and product managers involved in the production and development, of MEMS who want to learn more about determining and improving product reliability and implementing such practices within their own organizations. "The MEMS Reference Shelf is a series devoted to Micro-Electro-Mechanical Systems (MEMS), which combine mechanical, electrical, optical, or fluidic elements on a common microfabricated substrate to create sensors, actuators, and microsystems. This series, authored by leading MEMS practitioners, strives to provide a framework where basic principles, known methodologies, and new applications are integrated in a coherent and consistent manner." STEPHEN D. SENTURIA Massachusetts Institute of Technology, Professor of Electrical Engineering, Emeritus
目录
Foreword 4
Preface 6
Acknowledgements 8
Contents 9
1 Introduction: Reliability of MEMS 12
References 18
2 Lifetime Prediction 19
2.1 Introduction 19
2.2 Mathematical Measures of Reliability 19
2.3 Reliability Distributions 21
2.3.1 Bathtub Curve 21
2.3.2 Exponential Distribution 22
2.3.3 Weibull Distribution 23
2.3.4 Lognormal distribution 25
2.3.5 Acceleration Factors 29
2.3.6 Lifetime Units 34
2.4 Case Studies 35
2.4.1 Texas Instruments Digital Mirror Device 35
2.4.2 Case Study: Analog Devices Accelerometer 40
2.4.3 Case Study: RF MEMS 44
2.5 Summary 51
References 51
3 Failure Modes and Mechanisms: Failure Modes and Mechanisms in MEMS 53
3.1 Introduction 53
3.2 Design Phase Failure Modes 55
3.2.1 Functional Failure Modes 55
3.2.1.1 Element Design 56
3.2.1.2 System Level Design 61
3.2.1.3 Package Design 62
3.2.2 MEMS Material Failure Modes 66
3.2.2.1 Thermo-Mechanical (TM) Failures 67
3.2.2.2 Electrical (EL) Failures 72
3.2.2.3 Environmental (ENV) Failures 73
3.2.3 Non-analyzed Conditions 74
3.2.3.1 Leakage Currents 75
3.3 Manufacturing Failure Modes 76
3.3.1 Front End Process Defects 76
3.3.1.1 Local (Wafer) Defects 77
3.3.1.2 Material Transport
Deposit/Etch Failures 80
3.3.1.3 Stress Relaxation Effects 83
3.3.1.4 Process Tribological Failures
Stiction 83
3.3.1.5 Wafer Bonding (or Hermiticity) 86
3.3.2 Back End Process Failures 88
3.3.2.1 Wafer Dicing 88
3.3.2.2 Wafer Handling 89
3.3.2.3 Packaging 90
3.4 Summary 90
References 91
4 In-Use Failures 94
4.1 Introduction 94
4.2 Mechanical Failure Modes 94
4.2.1 Fracture 95
4.2.2 Mechanical Shock Resistance 99
4.2.2.1 Introduction 99
4.2.2.2 Response to Shocks 102
4.2.2.3 Increasing Shock Resistance 108
4.2.2.4 Simple Model for Critical Acceleration and Case Study on SOI Micro-Mirrors 112
4.2.2.5 Conclusions on Shock 119
4.2.3 Vibration 120
4.2.4 Creep 123
4.2.4.1 Introduction 123
4.2.4.2 Reducing Creep in MEMS 124
4.2.4.3 Metal Films on Silicon MEMS 126
4.2.4.4 Conclusions on Creep 127
4.2.5 Fatigue 127
4.2.5.1 Introduction to Fatigue in Brittle and Ductile Materials 127
4.2.5.2 How to Measure Fatigue in MEMS 128
4.2.5.3 Silicon MEMS 128
4.2.5.4 Metals 130
4.3 Electrical Failure Modes 132
4.3.1 Charging in MEMS 132
4.3.1.1 Introduction to Dielectric Charging 132
4.3.1.2 Mitigation of Charging Effects 135
4.3.1.3 Geometry Changes 136
4.3.1.4 Charge Dissipation Layers 140
4.3.1.5 Multi-Step Voltage Drive for RF MEMS Switches 142
4.3.2 Electrical Breakdown and ESD 147
4.3.2.1 Electrical Breakdown in a Gas for Micron-Scale Gaps 148
4.3.2.2 Electrical Breakdown Across Solid Dielectrics 152
4.3.2.3 ESD and EOS 153
4.3.3 Electromigration 155
4.4 Environmental 157
4.4.1 Radiation 158
4.4.1.1 Typical Doses for Space Applications 158
4.4.1.2 Damage Mechanisms 160
4.4.1.3 Degradation Processes 160
4.4.1.4 Degradation Effects 161
4.4.1.5 Review of Published Data on MEMS Radiation Tolerance 162
4.4.1.6 Suggestions for Radiation-Hardening MEMS 167
4.4.2 Anodic Oxidation and Galvanic Corrosion of Silicon 168
4.4.2.1 Origin of Anodic Oxidation 168
4.4.2.2 Observations and Mitigation 169
4.4.2.3 Galvanic Corrosion During Release in HF 172
4.4.3 Metal Corrosion 175
4.5 Conclusions 179
References 180
5 Root Cause and Failure Analysis 187
5.1 Introduction 187
5.2 FMEA, Failure Mode and Effects Analysis 188
5.2.1 RPN (Risk Priority Number) Levels 189
5.2.2 RFMEA Example 189
5.3 Case Study of RFMEA Failure Mode 193
5.3.1 RFMEA Safeguard: Design for Reliability, Mirror Curvature Matching 193
5.3.2 RFMEA Safeguard: Test for Curvature 196
5.3.3 RFMEA Safeguard: Perform Accelerated Thermal Testing and Compare Radius of Curvature Change to Predictions 198
5.3.4 Implementation of RFMEA Learning into Production 200
5.4 Failure Analysis as a Tool for Root Cause 201
5.5 Analytical Methods for Failure Analysis 202
5.5.1 Laser Doppler Vibrometry (LDV) 202
5.5.2 Interferometry 204
5.5.3 Scanning Electron Microscopy (SEM) 206
5.5.4 Electron Beam Scatter Detector (EBSD) 207
5.5.5 Transmission Electron Microscopy (TEM) 208
5.5.6 Focused Ion Beam (FIB) 209
5.5.7 Atomic Force Microscopy (AFM) 211
5.5.8 Energy Dispersive X-ray Analysis (EDS, EDX, EDAX) 212
5.5.9 Auger Analysis 214
5.5.10 X-Ray Photoelectron Spectroscopy (ESCA/XPS) 216
5.5.11 Time of Flight Secondary Ion Mass Spectroscopy (TOFSIMS) 218
5.5.12 Fourier Transform Infrared Spectroscopy (FTIR) 219
5.6 Summary 221
References 221
6 Testing and Standards for Qualification 223
6.1 Introduction 223
6.2 Testing MEMS 223
6.2.1 Classes of MEMS Devices 224
6.3 Test Equipment for MEMS 225
6.3.1 Shaker Table for Vibration Testing 226
6.3.2 Optical Testing for Deformable Mirrors 229
6.3.3 Dynamic Interferometry 231
6.3.4 MEMS Optical Switch Production Test System 231
6.3.5 Laser Doppler Vibrometer/Strobe Video System 232
6.3.6 SHiMMer (Sandia High Volume Measurement of Micromachine Reliability) 235
6.4 Quality Standards and Qualifications 235
6.4.1 Mil-Std-883 (Revision H is current) 242
6.4.1.1 Temperature ranges from Stabilization Bake, Method 1005.9 242
6.4.1.2 Temperature cycling, Method 1010.8 242
6.4.1.3 Variable Frequency Vibration, Method 2007.3 244
6.4.1.4 Mechanical Shock, Method 2002.5 244
6.4.1.5 Constant Acceleration, Method 2001.3 244
6.4.2 Mil-Std-810 (Current Revision G) 245
6.4.2.1 High Temperature, Method 501.5 246
6.4.2.2 Thermal Shock, Test Method 503.5 247
6.4.3 Telcordia Standards 248
6.4.4 Automotive Standards 248
6.5 MEMS Qualification Testing 250
6.5.1 ADI Accelerometers for Airbag Deployment 250
6.5.2 Motorola MEMS Pressure Sensors 253
6.5.3 Example: Space and Military Qualification 256
6.5.3.1 NASA Space Random Vibration Specifications 256
6.5.3.2 DMD Ruggedization
Example of a MEMS Product Tested to Extreme Conditions 257
6.6 Summary 258
References 259
7 Continuous Improvement: Tools and Techniques for Reliability Improvement 261
7.1 The Yield-Reliability Connection 261
7.2 Yield Improvement Techniques 264
7.2.1 Design for Manufacturability (DfM) 264
7.2.2 Design for Test (DfT) 271
7.2.3 Process and Packaging Integration 274
7.2.4 Yield Modeling 276
7.3 Reliability Enhancement 277
7.3.1 Process Stability and Reproducibility 277
7.3.1.1 Process Characterization 278
7.3.1.2 Material Property Characterization 279
7.3.1.3 Test Structures and PCMs 281
7.3.2 Product Qualification 286
7.3.2.1 Acceleration Factors 286
7.3.2.2 MEMS Qualification Testing 288
7.4 Design for Reliability (DFR) 290
7.5 Summary 292
References 293
Subject Index 297
Preface 6
Acknowledgements 8
Contents 9
1 Introduction: Reliability of MEMS 12
References 18
2 Lifetime Prediction 19
2.1 Introduction 19
2.2 Mathematical Measures of Reliability 19
2.3 Reliability Distributions 21
2.3.1 Bathtub Curve 21
2.3.2 Exponential Distribution 22
2.3.3 Weibull Distribution 23
2.3.4 Lognormal distribution 25
2.3.5 Acceleration Factors 29
2.3.6 Lifetime Units 34
2.4 Case Studies 35
2.4.1 Texas Instruments Digital Mirror Device 35
2.4.2 Case Study: Analog Devices Accelerometer 40
2.4.3 Case Study: RF MEMS 44
2.5 Summary 51
References 51
3 Failure Modes and Mechanisms: Failure Modes and Mechanisms in MEMS 53
3.1 Introduction 53
3.2 Design Phase Failure Modes 55
3.2.1 Functional Failure Modes 55
3.2.1.1 Element Design 56
3.2.1.2 System Level Design 61
3.2.1.3 Package Design 62
3.2.2 MEMS Material Failure Modes 66
3.2.2.1 Thermo-Mechanical (TM) Failures 67
3.2.2.2 Electrical (EL) Failures 72
3.2.2.3 Environmental (ENV) Failures 73
3.2.3 Non-analyzed Conditions 74
3.2.3.1 Leakage Currents 75
3.3 Manufacturing Failure Modes 76
3.3.1 Front End Process Defects 76
3.3.1.1 Local (Wafer) Defects 77
3.3.1.2 Material Transport
Deposit/Etch Failures 80
3.3.1.3 Stress Relaxation Effects 83
3.3.1.4 Process Tribological Failures
Stiction 83
3.3.1.5 Wafer Bonding (or Hermiticity) 86
3.3.2 Back End Process Failures 88
3.3.2.1 Wafer Dicing 88
3.3.2.2 Wafer Handling 89
3.3.2.3 Packaging 90
3.4 Summary 90
References 91
4 In-Use Failures 94
4.1 Introduction 94
4.2 Mechanical Failure Modes 94
4.2.1 Fracture 95
4.2.2 Mechanical Shock Resistance 99
4.2.2.1 Introduction 99
4.2.2.2 Response to Shocks 102
4.2.2.3 Increasing Shock Resistance 108
4.2.2.4 Simple Model for Critical Acceleration and Case Study on SOI Micro-Mirrors 112
4.2.2.5 Conclusions on Shock 119
4.2.3 Vibration 120
4.2.4 Creep 123
4.2.4.1 Introduction 123
4.2.4.2 Reducing Creep in MEMS 124
4.2.4.3 Metal Films on Silicon MEMS 126
4.2.4.4 Conclusions on Creep 127
4.2.5 Fatigue 127
4.2.5.1 Introduction to Fatigue in Brittle and Ductile Materials 127
4.2.5.2 How to Measure Fatigue in MEMS 128
4.2.5.3 Silicon MEMS 128
4.2.5.4 Metals 130
4.3 Electrical Failure Modes 132
4.3.1 Charging in MEMS 132
4.3.1.1 Introduction to Dielectric Charging 132
4.3.1.2 Mitigation of Charging Effects 135
4.3.1.3 Geometry Changes 136
4.3.1.4 Charge Dissipation Layers 140
4.3.1.5 Multi-Step Voltage Drive for RF MEMS Switches 142
4.3.2 Electrical Breakdown and ESD 147
4.3.2.1 Electrical Breakdown in a Gas for Micron-Scale Gaps 148
4.3.2.2 Electrical Breakdown Across Solid Dielectrics 152
4.3.2.3 ESD and EOS 153
4.3.3 Electromigration 155
4.4 Environmental 157
4.4.1 Radiation 158
4.4.1.1 Typical Doses for Space Applications 158
4.4.1.2 Damage Mechanisms 160
4.4.1.3 Degradation Processes 160
4.4.1.4 Degradation Effects 161
4.4.1.5 Review of Published Data on MEMS Radiation Tolerance 162
4.4.1.6 Suggestions for Radiation-Hardening MEMS 167
4.4.2 Anodic Oxidation and Galvanic Corrosion of Silicon 168
4.4.2.1 Origin of Anodic Oxidation 168
4.4.2.2 Observations and Mitigation 169
4.4.2.3 Galvanic Corrosion During Release in HF 172
4.4.3 Metal Corrosion 175
4.5 Conclusions 179
References 180
5 Root Cause and Failure Analysis 187
5.1 Introduction 187
5.2 FMEA, Failure Mode and Effects Analysis 188
5.2.1 RPN (Risk Priority Number) Levels 189
5.2.2 RFMEA Example 189
5.3 Case Study of RFMEA Failure Mode 193
5.3.1 RFMEA Safeguard: Design for Reliability, Mirror Curvature Matching 193
5.3.2 RFMEA Safeguard: Test for Curvature 196
5.3.3 RFMEA Safeguard: Perform Accelerated Thermal Testing and Compare Radius of Curvature Change to Predictions 198
5.3.4 Implementation of RFMEA Learning into Production 200
5.4 Failure Analysis as a Tool for Root Cause 201
5.5 Analytical Methods for Failure Analysis 202
5.5.1 Laser Doppler Vibrometry (LDV) 202
5.5.2 Interferometry 204
5.5.3 Scanning Electron Microscopy (SEM) 206
5.5.4 Electron Beam Scatter Detector (EBSD) 207
5.5.5 Transmission Electron Microscopy (TEM) 208
5.5.6 Focused Ion Beam (FIB) 209
5.5.7 Atomic Force Microscopy (AFM) 211
5.5.8 Energy Dispersive X-ray Analysis (EDS, EDX, EDAX) 212
5.5.9 Auger Analysis 214
5.5.10 X-Ray Photoelectron Spectroscopy (ESCA/XPS) 216
5.5.11 Time of Flight Secondary Ion Mass Spectroscopy (TOFSIMS) 218
5.5.12 Fourier Transform Infrared Spectroscopy (FTIR) 219
5.6 Summary 221
References 221
6 Testing and Standards for Qualification 223
6.1 Introduction 223
6.2 Testing MEMS 223
6.2.1 Classes of MEMS Devices 224
6.3 Test Equipment for MEMS 225
6.3.1 Shaker Table for Vibration Testing 226
6.3.2 Optical Testing for Deformable Mirrors 229
6.3.3 Dynamic Interferometry 231
6.3.4 MEMS Optical Switch Production Test System 231
6.3.5 Laser Doppler Vibrometer/Strobe Video System 232
6.3.6 SHiMMer (Sandia High Volume Measurement of Micromachine Reliability) 235
6.4 Quality Standards and Qualifications 235
6.4.1 Mil-Std-883 (Revision H is current) 242
6.4.1.1 Temperature ranges from Stabilization Bake, Method 1005.9 242
6.4.1.2 Temperature cycling, Method 1010.8 242
6.4.1.3 Variable Frequency Vibration, Method 2007.3 244
6.4.1.4 Mechanical Shock, Method 2002.5 244
6.4.1.5 Constant Acceleration, Method 2001.3 244
6.4.2 Mil-Std-810 (Current Revision G) 245
6.4.2.1 High Temperature, Method 501.5 246
6.4.2.2 Thermal Shock, Test Method 503.5 247
6.4.3 Telcordia Standards 248
6.4.4 Automotive Standards 248
6.5 MEMS Qualification Testing 250
6.5.1 ADI Accelerometers for Airbag Deployment 250
6.5.2 Motorola MEMS Pressure Sensors 253
6.5.3 Example: Space and Military Qualification 256
6.5.3.1 NASA Space Random Vibration Specifications 256
6.5.3.2 DMD Ruggedization
Example of a MEMS Product Tested to Extreme Conditions 257
6.6 Summary 258
References 259
7 Continuous Improvement: Tools and Techniques for Reliability Improvement 261
7.1 The Yield-Reliability Connection 261
7.2 Yield Improvement Techniques 264
7.2.1 Design for Manufacturability (DfM) 264
7.2.2 Design for Test (DfT) 271
7.2.3 Process and Packaging Integration 274
7.2.4 Yield Modeling 276
7.3 Reliability Enhancement 277
7.3.1 Process Stability and Reproducibility 277
7.3.1.1 Process Characterization 278
7.3.1.2 Material Property Characterization 279
7.3.1.3 Test Structures and PCMs 281
7.3.2 Product Qualification 286
7.3.2.1 Acceleration Factors 286
7.3.2.2 MEMS Qualification Testing 288
7.4 Design for Reliability (DFR) 290
7.5 Summary 292
References 293
Subject Index 297
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×