RF power amplifiers /
副标题:无
分类号:
ISBN:9780470779460
微信扫一扫,移动浏览光盘
简介
An advanced textbook covering the fundamental theory of RF power amplifiers and their uses, this book provides essential guidance for design procedures. The introduction explains the basic theory of RF power amplifiers besides providing the basic classification of the different types of RF power amplifier. It then systematically dedicates a chapter to each different of RF power amplifier covering A, B and C, D (full-bridge and half-bridge types), E (zero-voltage-switching and zero-current-switching), F and DE amplifiers. Throughout this comprehensive guide, the optimal operating conditions are explored and the possible causes for suboptimum operation explained. The book then considers integrated inductors and linearization techniques and LC Oscillators in the concluding chapters. A comprehensive text covering the fundamentals of RF power amplifiers and their range of applications in radio and TV broadcasting, wireless communications and radars. Presents accessible coverage of the complex principles of operation of RF power amplifiers and radio power systems. Introduces the fundamental design techniques and procedures for practitioners for RF power amplifiers. All chapters contain examples and design procedures throughout, with review questions and problems at the end of each chapter. A solutions manual is available for instructors upon enquiry
目录
Contents 9
Preface 17
About the Author 19
List of Symbols 21
1 Introduction 25
1.1 Block Diagram of RF Power Amplifiers 25
1.2 Classes of Operation of RF Power Amplifiers 27
1.3 Parameters of RF Power Amplifiers 29
1.4 Conditions for 100% Efficiency of Power Amplifiers 31
1.5 Conditions for Nonzero Output Power at 100% Efficiency of Power Amplifiers 34
1.6 Output Power of Class E ZVS Amplifier 35
1.7 Class E ZCS Amplifier 38
1.8 Propagation of Electromagnetic Waves 40
1.9 Frequency Spectrum 43
1.10 Duplexing 45
1.11 Multiple-access Techniques 45
1.12 Nonlinear Distortion in Transmitters 46
1.13 Harmonics of Carrier Frequency 47
1.14 Intermodulation 49
1.15 Dynamic Range of Power Amplifiers 51
1.16 Analog Modulation 52
1.16.1 Amplitude Modulation 53
1.16.2 Phase Modulation 56
1.16.3 Frequency Modulation 57
1.17 Digital Modulation 60
1.17.1 Amplitude-shift Keying 60
1.17.2 Phase-shift Keying 61
1.17.3 Frequency-shift Keying 62
1.18 Radars 63
1.19 Radio-frequency Identification 64
1.20 Summary 64
1.21 References 66
1.22 Review Questions 66
1.23 Problems 67
2 Class A RF Power Amplifier 69
2.1 Introduction 69
2.2 Circuit of Class A RF Power Amplifier 69
2.3 Power MOSFET Characteristics 71
2.4 Waveforms of Class A RF Amplifier 76
2.5 Parameters of Class A RF Power Amplifier 80
2.6 Parallel-resonant Circuit 83
2.7 Power Losses and Efficiency of Parallel Resonant Circuit 86
2.8 Impedance Matching Circuits 90
2.9 Class A RF Linear Amplifier 93
2.9.1 Amplifier of Variable-envelope Signals 93
2.9.2 Amplifiers of Constant-envelope Signals 94
2.10 Summary 95
2.11 References 95
2.12 Review Questions 96
2.13 Problems 96
3 Class AB, B, and C RF Power Amplifiers 99
3.1 Introduction 99
3.2 Class B RF Power Amplifier 99
3.2.1 Circuit of Class B RF Power Amplifier 99
3.2.2 Waveforms of Class B Amplifier 100
3.2.3 Power Relationships in Class B Amplifier 102
3.2.4 Efficiency of Class B Amplifier 104
3.3 Class AB and C RF Power Amplifiers 106
3.3.1 Waveforms of Class AB and C RF Power Amplifiers 106
3.3.2 Power of the Class AB, B, and C Amplifiers 110
3.3.3 Efficiency of the Class AB, B, and C Amplifiers 112
3.3.4 Parameters of Class AB Amplifier at theta = 120 113
3.3.5 Parameters of Class C Amplifier at theta = 60 115
3.3.6 Parameters of Class C Amplifier at theta = 45 117
3.4 Push-pull Complementary Class AB, B, and C RF Power Amplifiers 119
3.4.1 Circuit 119
3.4.2 Even Harmonic Cancellation in Push-pull Amplifiers 120
3.4.3 Power Relationships 121
3.4.4 Device Stresses 122
3.5 Transformer-coupled Class B Push-pull Amplifier 123
3.5.1 Waveforms 123
3.5.2 Power Relationships 126
3.5.3 Device Stresses 126
3.6 Class AB, B, and C Amplifiers of Variable-envelope Signals 129
3.7 Summary 131
3.8 References 131
3.9 Review Questions 132
3.10 Problems 132
4 Class D RF Power Amplifiers 133
4.1 Introduction 133
4.2 Circuit Description 134
4.3 Principle of Operation 138
4.3.1 Operation Below Resonance 139
4.3.2 Operation Above Resonance 142
4.4 Topologies of Class D Voltage-source RF Power Amplifiers 143
4.5 Analysis 145
4.5.1 Assumptions 145
4.5.2 Series-resonant Circuit 145
4.5.3 Input Impedance of Series-resonant Circuit 148
4.5.4 Currents, Voltages, and Powers 148
4.5.5 Current and Voltage Stresses 153
4.5.6 Operation Under Short-circuit and Open-circuit Conditions 157
4.6 Voltage Transfer Function 158
4.7 Bandwidth of Class D Amplifier 160
4.8 Efficiency of Half-bridge Class D Power Amplifier 161
4.8.1 Conduction Losses 161
4.8.2 Turn-on Switching Loss 162
4.8.3 Turn-off Switching Loss 166
4.9 Design Example 168
4.10 Class D RF Power Amplifier with Amplitude Modulation 170
4.11 Transformer-coupled Push-pull Class D Voltage-switching RF Power Amplifier 171
4.11.1 Waveforms 171
4.11.2 Power 174
4.11.3 Current and Voltage Stresses 174
4.11.4 Efficiency 174
4.12 Class D Full-bridge RF Power Amplifier 176
4.12.1 Currents, Voltages, and Powers 176
4.12.2 Efficiency of Full-bridge Class D RF Power Amplifier 180
4.12.3 Operation Under Short-circuit and Open-circuit Conditions 180
4.12.4 Voltage Transfer Function 181
4.13 Phase Control of Full-bridge Class D Power Amplifier 182
4.14 Class D Current-switching RF Power Amplifier 184
4.14.1 Circuit and Waveforms 184
4.14.2 Power 186
4.14.3 Voltage and Current Stresses 187
4.14.4 Efficiency 187
4.15 Transformer-coupled Push-pull Class D Current-switching RF Power Amplifier 189
4.15.1 Waveforms 189
4.15.2 Power 191
4.15.3 Device Stresses 192
4.15.4 Efficiency 192
4.16 Bridge Class D Current-switching RF Power Amplifier 195
4.17 Summary 199
4.18 References 200
4.19 Review Questions 201
4.20 Problems 202
5 Class E RF Zero-voltage-switching RF Power Amplifier 203
5.1 Introduction 203
5.2 Circuit Description 203
5.3 Circuit Operation 205
5.4 ZVS and ZDS Operation of Class E Amplifier 206
5.5 Suboptimum Operation 208
5.6 Analysis 209
5.6.1 Assumptions 209
5.6.2 Current and Voltage Waveforms 209
5.6.3 Current and Voltage Stresses 211
5.6.4 Input Impedance of the Series Resonant Circuit 212
5.6.5 Output Power 213
5.6.6 Component Values 213
5.7 Maximum Operating Frequency 214
5.8 Choke Inductance 215
5.9 Summary of Parameters at D = 0.5 215
5.10 Efficiency 216
5.11 Design of Basic Class E Amplifier 219
5.12 Impedance Matching Resonant Circuits 222
5.12.1 Tapped Capacitor Downward Impedance Matching Resonant Circuit 蟺1a 223
5.12.2 Tapped Inductor Downward Impedance Matching Resonant Circuit 蟺2a 226
5.12.3 Matching Resonant Circuit 蟺1b 229
5.12.4 Matching Resonant Circuit 蟺2b 232
5.12.5 Quarter-wavelength Impedance Inverters 235
5.13 Push-pull Class E ZVS RF Amplifier 238
5.14 Class E ZVS RF Power Amplifier with Finite DC-feed Inductance 240
5.15 Class E ZVS Amplifier with Parallel-series Resonant Circuit 243
5.16 Class E ZVS Amplifier with Nonsinusoidal Output Voltage 245
5.17 Class E ZVS Power Amplifier with Parallel Resonant Circuit 12
5.18 Amplitude Modulation of Class E ZVS RF Power Amplifier 255
5.19 Summary 257
5.20 References 258
5.21 Review Questions 261
5.22 Problems 261
6 Class E Zero-current-switching RF Power Amplifier 263
6.1 Introduction 263
6.2 Circuit Description 263
6.3 Principle of Operation 264
6.4 Analysis 267
6.4.1 Steady-state Current and Voltage Waveforms 267
6.4.2 Peak Switch Current and Voltage 269
6.4.3 Fundamental-frequency Components 269
6.5 Power Relationships 271
6.6 Element Values of Load Network 271
6.7 Design Example 272
6.8 Summary 273
6.9 References 273
6.10 Review Questions 273
6.11 Problems 274
7 Class DE RF Power Amplifier 275
7.1 Introduction 275
7.2 Analysis of Class DE RF Power Amplifier 275
7.3 Components 281
7.4 Device Stresses 282
7.5 Design Equations 282
7.6 Maximum Operating Frequency 282
7.7 Class DE Amplifier with Only One Shunt Capacitor 284
7.8 Components 287
7.9 Cancellation of Nonlinearities of Transistor Output Capacitances 288
7.10 Summary 288
7.11 References 288
7.12 Review Questions 289
7.13 Problems 289
8 Class F RF Power Amplifier 291
8.1 Introduction 291
8.2 Class F RF Power Amplifier with Third Harmonic 292
8.2.1 Maximally Flat Class F3 Amplifier 295
8.2.2 Maximum Drain Efficiency Class F3 Amplifier 300
8.3 Class F RF Power Amplifier with Third and Fifth Harmonics 305
8.3.1 Maximally Flat Class F35 Amplifier 305
8.3.2 Maximum Drain Efficiency Class F35 Amplifier 311
8.4 Class F RF Power Amplifier with Third, Fifth, and Seventh Harmonics 313
8.5 Class F RF Power Amplifier with Parallel-resonant Circuit and Quarter-wavelength Transmission Line 313
8.6 Class F RF Power Amplifier with Second Harmonic 319
8.6.1 Maximally Flat Class F2 Amplifier 319
8.6.2 Maximum Drain Efficiency Class F2 Amplifier 325
8.7 Class F RF Power Amplifier with Second and Fourth Harmonics 329
8.7.1 Maximally Flat Class F24 Amplifier 329
8.7.2 Maximum Drain Efficiency Class F24 Amplifier 334
8.8 Class F RF Power Amplifier with Second, Fourth, and Sixth Harmonics 336
8.9 Class F RF Power Amplifier with Series-resonant Circuit and Quarter-wavelength Transmission Line 337
8.10 Summary 341
8.11 References 343
8.12 Review Questions 344
8.13 Problems 344
9 Linearization and Efficiency Improvement of RF Power Amplifiers 345
9.1 Introduction 345
9.2 Predistortion 346
9.3 Feedforward Linearization Technique 348
9.4 Negative Feedback Linearization Technique 350
9.5 Envelope Elimination and Restoration 354
9.6 Envelope Tracking 355
9.7 The Doherty Amplifier 356
9.7.1 Condition for High Efficiency Over Wide Power Range 357
9.7.2 Impedance Modulation Concept 358
9.7.3 Equivalent Circuit of the Doherty Amplifier 359
9.7.4 Power and Efficiency of Doherty Amplifier 360
9.8 Outphasing Power Amplifier 362
9.9 Summary 364
9.10 References 365
9.11 Review Questions 366
9.12 Problems 367
10 Integrated Inductors 369
10.1 Introduction 369
10.2 Skin Effect 369
10.3 Resistance of Rectangular Trace 372
10.4 Inductance of Straight Rectangular Trace 374
10.5 Meander Inductors 375
10.6 Inductance of Straight Round Conductor 377
10.7 Inductance of Circular Round Wire Loop 378
10.8 Inductance of Two-parallel Wire Loop 378
10.9 Inductance of Rectangle of Round Wire 379
10.10 Inductance of Polygon Round Wire Loop 379
10.11 Bondwire Inductors 379
10.12 Single-turn Planar Inductors 381
10.13 Inductance of Planar Square Loop 383
10.14 Planar Spiral Inductors 383
10.14.1 Geometries of Planar Spiral Inductors 383
10.14.2 Inductance of Square Planar Inductors 385
10.14.3 Inductance of Hexagonal Spiral Inductors 393
10.14.4 Inductance of Octagonal Spiral Inductors 394
10.14.5 Inductance of Circular Spiral Inductors 395
10.15 Multimetal Spiral Inductors 396
10.16 Planar Transformers 397
10.17 MEMS Inductors 398
10.18 Inductance of Coaxial Cable 400
10.19 Inductance of Two-wire Transmission Line 400
10.20 Eddy Currents in Integrated Inductors 400
10.21 Model of RF Integrated Inductors 401
10.22 PCB Integrated Inductors 402
10.23 Summary 403
10.24 References 404
10.25 Review Questions 406
10.26 Problems 407
Appendices 409
Appendix A SPICE Model of Power MOSFETs 411
Appendix B Introduction to SPICE 415
Appendix C Introduction to MATLAB 419
Answers to Problems 423
Index 427
Preface 17
About the Author 19
List of Symbols 21
1 Introduction 25
1.1 Block Diagram of RF Power Amplifiers 25
1.2 Classes of Operation of RF Power Amplifiers 27
1.3 Parameters of RF Power Amplifiers 29
1.4 Conditions for 100% Efficiency of Power Amplifiers 31
1.5 Conditions for Nonzero Output Power at 100% Efficiency of Power Amplifiers 34
1.6 Output Power of Class E ZVS Amplifier 35
1.7 Class E ZCS Amplifier 38
1.8 Propagation of Electromagnetic Waves 40
1.9 Frequency Spectrum 43
1.10 Duplexing 45
1.11 Multiple-access Techniques 45
1.12 Nonlinear Distortion in Transmitters 46
1.13 Harmonics of Carrier Frequency 47
1.14 Intermodulation 49
1.15 Dynamic Range of Power Amplifiers 51
1.16 Analog Modulation 52
1.16.1 Amplitude Modulation 53
1.16.2 Phase Modulation 56
1.16.3 Frequency Modulation 57
1.17 Digital Modulation 60
1.17.1 Amplitude-shift Keying 60
1.17.2 Phase-shift Keying 61
1.17.3 Frequency-shift Keying 62
1.18 Radars 63
1.19 Radio-frequency Identification 64
1.20 Summary 64
1.21 References 66
1.22 Review Questions 66
1.23 Problems 67
2 Class A RF Power Amplifier 69
2.1 Introduction 69
2.2 Circuit of Class A RF Power Amplifier 69
2.3 Power MOSFET Characteristics 71
2.4 Waveforms of Class A RF Amplifier 76
2.5 Parameters of Class A RF Power Amplifier 80
2.6 Parallel-resonant Circuit 83
2.7 Power Losses and Efficiency of Parallel Resonant Circuit 86
2.8 Impedance Matching Circuits 90
2.9 Class A RF Linear Amplifier 93
2.9.1 Amplifier of Variable-envelope Signals 93
2.9.2 Amplifiers of Constant-envelope Signals 94
2.10 Summary 95
2.11 References 95
2.12 Review Questions 96
2.13 Problems 96
3 Class AB, B, and C RF Power Amplifiers 99
3.1 Introduction 99
3.2 Class B RF Power Amplifier 99
3.2.1 Circuit of Class B RF Power Amplifier 99
3.2.2 Waveforms of Class B Amplifier 100
3.2.3 Power Relationships in Class B Amplifier 102
3.2.4 Efficiency of Class B Amplifier 104
3.3 Class AB and C RF Power Amplifiers 106
3.3.1 Waveforms of Class AB and C RF Power Amplifiers 106
3.3.2 Power of the Class AB, B, and C Amplifiers 110
3.3.3 Efficiency of the Class AB, B, and C Amplifiers 112
3.3.4 Parameters of Class AB Amplifier at theta = 120 113
3.3.5 Parameters of Class C Amplifier at theta = 60 115
3.3.6 Parameters of Class C Amplifier at theta = 45 117
3.4 Push-pull Complementary Class AB, B, and C RF Power Amplifiers 119
3.4.1 Circuit 119
3.4.2 Even Harmonic Cancellation in Push-pull Amplifiers 120
3.4.3 Power Relationships 121
3.4.4 Device Stresses 122
3.5 Transformer-coupled Class B Push-pull Amplifier 123
3.5.1 Waveforms 123
3.5.2 Power Relationships 126
3.5.3 Device Stresses 126
3.6 Class AB, B, and C Amplifiers of Variable-envelope Signals 129
3.7 Summary 131
3.8 References 131
3.9 Review Questions 132
3.10 Problems 132
4 Class D RF Power Amplifiers 133
4.1 Introduction 133
4.2 Circuit Description 134
4.3 Principle of Operation 138
4.3.1 Operation Below Resonance 139
4.3.2 Operation Above Resonance 142
4.4 Topologies of Class D Voltage-source RF Power Amplifiers 143
4.5 Analysis 145
4.5.1 Assumptions 145
4.5.2 Series-resonant Circuit 145
4.5.3 Input Impedance of Series-resonant Circuit 148
4.5.4 Currents, Voltages, and Powers 148
4.5.5 Current and Voltage Stresses 153
4.5.6 Operation Under Short-circuit and Open-circuit Conditions 157
4.6 Voltage Transfer Function 158
4.7 Bandwidth of Class D Amplifier 160
4.8 Efficiency of Half-bridge Class D Power Amplifier 161
4.8.1 Conduction Losses 161
4.8.2 Turn-on Switching Loss 162
4.8.3 Turn-off Switching Loss 166
4.9 Design Example 168
4.10 Class D RF Power Amplifier with Amplitude Modulation 170
4.11 Transformer-coupled Push-pull Class D Voltage-switching RF Power Amplifier 171
4.11.1 Waveforms 171
4.11.2 Power 174
4.11.3 Current and Voltage Stresses 174
4.11.4 Efficiency 174
4.12 Class D Full-bridge RF Power Amplifier 176
4.12.1 Currents, Voltages, and Powers 176
4.12.2 Efficiency of Full-bridge Class D RF Power Amplifier 180
4.12.3 Operation Under Short-circuit and Open-circuit Conditions 180
4.12.4 Voltage Transfer Function 181
4.13 Phase Control of Full-bridge Class D Power Amplifier 182
4.14 Class D Current-switching RF Power Amplifier 184
4.14.1 Circuit and Waveforms 184
4.14.2 Power 186
4.14.3 Voltage and Current Stresses 187
4.14.4 Efficiency 187
4.15 Transformer-coupled Push-pull Class D Current-switching RF Power Amplifier 189
4.15.1 Waveforms 189
4.15.2 Power 191
4.15.3 Device Stresses 192
4.15.4 Efficiency 192
4.16 Bridge Class D Current-switching RF Power Amplifier 195
4.17 Summary 199
4.18 References 200
4.19 Review Questions 201
4.20 Problems 202
5 Class E RF Zero-voltage-switching RF Power Amplifier 203
5.1 Introduction 203
5.2 Circuit Description 203
5.3 Circuit Operation 205
5.4 ZVS and ZDS Operation of Class E Amplifier 206
5.5 Suboptimum Operation 208
5.6 Analysis 209
5.6.1 Assumptions 209
5.6.2 Current and Voltage Waveforms 209
5.6.3 Current and Voltage Stresses 211
5.6.4 Input Impedance of the Series Resonant Circuit 212
5.6.5 Output Power 213
5.6.6 Component Values 213
5.7 Maximum Operating Frequency 214
5.8 Choke Inductance 215
5.9 Summary of Parameters at D = 0.5 215
5.10 Efficiency 216
5.11 Design of Basic Class E Amplifier 219
5.12 Impedance Matching Resonant Circuits 222
5.12.1 Tapped Capacitor Downward Impedance Matching Resonant Circuit 蟺1a 223
5.12.2 Tapped Inductor Downward Impedance Matching Resonant Circuit 蟺2a 226
5.12.3 Matching Resonant Circuit 蟺1b 229
5.12.4 Matching Resonant Circuit 蟺2b 232
5.12.5 Quarter-wavelength Impedance Inverters 235
5.13 Push-pull Class E ZVS RF Amplifier 238
5.14 Class E ZVS RF Power Amplifier with Finite DC-feed Inductance 240
5.15 Class E ZVS Amplifier with Parallel-series Resonant Circuit 243
5.16 Class E ZVS Amplifier with Nonsinusoidal Output Voltage 245
5.17 Class E ZVS Power Amplifier with Parallel Resonant Circuit 12
5.18 Amplitude Modulation of Class E ZVS RF Power Amplifier 255
5.19 Summary 257
5.20 References 258
5.21 Review Questions 261
5.22 Problems 261
6 Class E Zero-current-switching RF Power Amplifier 263
6.1 Introduction 263
6.2 Circuit Description 263
6.3 Principle of Operation 264
6.4 Analysis 267
6.4.1 Steady-state Current and Voltage Waveforms 267
6.4.2 Peak Switch Current and Voltage 269
6.4.3 Fundamental-frequency Components 269
6.5 Power Relationships 271
6.6 Element Values of Load Network 271
6.7 Design Example 272
6.8 Summary 273
6.9 References 273
6.10 Review Questions 273
6.11 Problems 274
7 Class DE RF Power Amplifier 275
7.1 Introduction 275
7.2 Analysis of Class DE RF Power Amplifier 275
7.3 Components 281
7.4 Device Stresses 282
7.5 Design Equations 282
7.6 Maximum Operating Frequency 282
7.7 Class DE Amplifier with Only One Shunt Capacitor 284
7.8 Components 287
7.9 Cancellation of Nonlinearities of Transistor Output Capacitances 288
7.10 Summary 288
7.11 References 288
7.12 Review Questions 289
7.13 Problems 289
8 Class F RF Power Amplifier 291
8.1 Introduction 291
8.2 Class F RF Power Amplifier with Third Harmonic 292
8.2.1 Maximally Flat Class F3 Amplifier 295
8.2.2 Maximum Drain Efficiency Class F3 Amplifier 300
8.3 Class F RF Power Amplifier with Third and Fifth Harmonics 305
8.3.1 Maximally Flat Class F35 Amplifier 305
8.3.2 Maximum Drain Efficiency Class F35 Amplifier 311
8.4 Class F RF Power Amplifier with Third, Fifth, and Seventh Harmonics 313
8.5 Class F RF Power Amplifier with Parallel-resonant Circuit and Quarter-wavelength Transmission Line 313
8.6 Class F RF Power Amplifier with Second Harmonic 319
8.6.1 Maximally Flat Class F2 Amplifier 319
8.6.2 Maximum Drain Efficiency Class F2 Amplifier 325
8.7 Class F RF Power Amplifier with Second and Fourth Harmonics 329
8.7.1 Maximally Flat Class F24 Amplifier 329
8.7.2 Maximum Drain Efficiency Class F24 Amplifier 334
8.8 Class F RF Power Amplifier with Second, Fourth, and Sixth Harmonics 336
8.9 Class F RF Power Amplifier with Series-resonant Circuit and Quarter-wavelength Transmission Line 337
8.10 Summary 341
8.11 References 343
8.12 Review Questions 344
8.13 Problems 344
9 Linearization and Efficiency Improvement of RF Power Amplifiers 345
9.1 Introduction 345
9.2 Predistortion 346
9.3 Feedforward Linearization Technique 348
9.4 Negative Feedback Linearization Technique 350
9.5 Envelope Elimination and Restoration 354
9.6 Envelope Tracking 355
9.7 The Doherty Amplifier 356
9.7.1 Condition for High Efficiency Over Wide Power Range 357
9.7.2 Impedance Modulation Concept 358
9.7.3 Equivalent Circuit of the Doherty Amplifier 359
9.7.4 Power and Efficiency of Doherty Amplifier 360
9.8 Outphasing Power Amplifier 362
9.9 Summary 364
9.10 References 365
9.11 Review Questions 366
9.12 Problems 367
10 Integrated Inductors 369
10.1 Introduction 369
10.2 Skin Effect 369
10.3 Resistance of Rectangular Trace 372
10.4 Inductance of Straight Rectangular Trace 374
10.5 Meander Inductors 375
10.6 Inductance of Straight Round Conductor 377
10.7 Inductance of Circular Round Wire Loop 378
10.8 Inductance of Two-parallel Wire Loop 378
10.9 Inductance of Rectangle of Round Wire 379
10.10 Inductance of Polygon Round Wire Loop 379
10.11 Bondwire Inductors 379
10.12 Single-turn Planar Inductors 381
10.13 Inductance of Planar Square Loop 383
10.14 Planar Spiral Inductors 383
10.14.1 Geometries of Planar Spiral Inductors 383
10.14.2 Inductance of Square Planar Inductors 385
10.14.3 Inductance of Hexagonal Spiral Inductors 393
10.14.4 Inductance of Octagonal Spiral Inductors 394
10.14.5 Inductance of Circular Spiral Inductors 395
10.15 Multimetal Spiral Inductors 396
10.16 Planar Transformers 397
10.17 MEMS Inductors 398
10.18 Inductance of Coaxial Cable 400
10.19 Inductance of Two-wire Transmission Line 400
10.20 Eddy Currents in Integrated Inductors 400
10.21 Model of RF Integrated Inductors 401
10.22 PCB Integrated Inductors 402
10.23 Summary 403
10.24 References 404
10.25 Review Questions 406
10.26 Problems 407
Appendices 409
Appendix A SPICE Model of Power MOSFETs 411
Appendix B Introduction to SPICE 415
Appendix C Introduction to MATLAB 419
Answers to Problems 423
Index 427
RF power amplifiers /
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×