简介
Berger (analytical chemistry, University of Leipzig, Germany) guides students and researchers through NMR experiments, beginning with routine 1D experiments and ending with a series of advanced 3D experiments on a protein. This third edition has been revised and expanded to 206 experiments, covering areas such as test procedures and routine spectra, variable temperature measurements, and the applications of selective pulses. Twenty new protein NMR experiments have been collected in a newly added chapter. Annotation 漏2004 Book News, Inc., Portland, OR (booknews.com)
目录
Preface p. v
Chapter 1 The NMR Spectrometer p. 1
1.1 Components of an NMR Spectrometer p. 1
1.1.1 The Magnet p. 1
1.1.2 The Spectrometer Cabinet p. 2
1.1.3 The Computer p. 3
1.1.4 Maintenance p. 3
1.2 Tuning a Probe-Head p. 3
1.3 The Lock Channel p. 4
1.4 The Art of Shimming p. 6
1.4.1 The Shim Gradients p. 6
1.4.2 The Shimming Procedure p. 8
1.4.3 Gradient Shimming p. 11
Chapter 2 Determination of Pulse-Duration p. 14
Exp. 2.1 Determination of the 90[degree] [superscript 1]H Transmitter Pulse-Duration p. 15
Exp. 2.2 Determination of the 90[degree] [superscript 13]C Transmitter Pulse-Duration p. 18
Exp. 2.3 Determination of the 90[degree] [superscript 1]H Decoupler Pulse-Duration p. 21
Exp. 2.4 The 90[degree] [superscript 1]H Pulse with Inverse Spectrometer Configuration p. 24
Exp. 2.5 The 90[degree] [superscript 13]C Decoupler Pulse with Inverse Configuration p. 27
Exp. 2.6 Composite Pulses p. 30
Exp. 2.7 Radiation Damping p. 33
Exp. 2.8 Pulse and Receiver Phases p. 36
Exp. 2.9 Determination of Radiofrequency Power p. 39
Chapter 3 Routine NMR Spectroscopy and Standard Tests p. 43
Exp. 3.1 The Standard [superscript 1]H NMR Experiment p. 44
Exp. 3.2 The Standard [superscript 13]C NMR Experiment p. 49
Exp. 3.3 The Application of Window Functions p. 54
Exp. 3.4 Computer-Aided Spectral Analysis p. 58
Exp. 3.5 Line Shape Test for [superscript 1]H NMR Spectroscopy p. 61
Exp. 3.6 Resolution Test for [superscript 1]H NMR Spectroscopy p. 64
Exp. 3.7 Sensitivity Test for [superscript 1]H NMR Spectroscopy p. 67
Exp. 3.8 Line Shape Test for [superscript 13]C NMR Spectroscopy p. 70
Exp. 3.9 ASTM Sensitivity Test for [superscript 13]C NMR Spectroscopy p. 73
Exp. 3.10 Sensitivity Test for [superscript 13]C NMR Spectroscopy p. 76
Exp. 3.11 Quadrature Image Test p. 79
Exp. 3.12 Dynamic Range Test for Signal Amplitudes p. 82
Exp. 3.13 13[degree] Phase Stability Test p. 85
Exp. 3.14 Radiofrequency Field Homogeneity p. 88
Chapter 4 Decoupling Techniques p. 91
Exp. 4.1 Decoupler Calibration for Homonuclear Decoupling p. 92
Exp. 4.2 Decoupler Calibration for Heteronuclear Decoupling p. 95
Exp. 4.3 Low-Power Calibration for Heteronuclear Decoupling p. 98
Exp. 4.4 Homonuclear Decoupling p. 101
Exp. 4.5 Homonuclear Decoupling at Two Frequencies p. 104
Exp. 4.6 The Homonuclear SPT Experiment p. 107
Exp. 4.7 The Heteronuclear SPT Experiment p. 110
Exp. 4.8 The Basic Homonuclear NOE Difference Experiment p. 113
Exp. 4.9 1D Nuclear Overhauser Difference Spectroscopy p. 116
Exp. 4.10 1D NOE Spectroscopy with Multiple Selective Irradiation p. 119
Exp. 4.11 [superscript 1]H Off-Resonance Decoupled [superscript 13]C NMR Spectra p. 122
Exp. 4.12 The Gated [superscript 1]H-Decoupling Technique p. 125
Exp. 4.13 The Inverse Gated [superscript 1]H-Decoupling Technique p. 128
Exp. 4.14 [superscript 1]H Single-Frequency Decoupling of [superscript 13]C NMR Spectra p. 131
Exp. 4.15 [superscript 1]H Low-Power Decoupling of [superscript 13]C NMR Spectra p. 134
Exp. 4.16 Measurement of the Heteronuclear Overhauser Effect p. 137
Chapter 5 Dynamic NMR Spectroscopy p. 140
Exp. 5.1 Low-Temperature Calibration Using Methanol p. 141
Exp. 5.2 High-Temperature Calibration Using 1,2-Ethanediol p. 145
Exp. 5.3 Dynamic [superscript 1]H NMR Spectroscopy on Dimethylformamide p. 149
Exp. 5.4 The Saturation Transfer Experiment p. 152
Exp. 5.5 Measurement of the Rotating-Frame Relaxation Time T[subscript 1 rho] p. 155
Chapter 6 1D Multipulse Sequences p. 159
Exp. 6.1 Measurement of the Spin-Lattice Relaxation Time T[subscript 1] p. 160
Exp. 6.2 Measurement of the Spin-Spin Relaxation Time T[subscript 2] p. 164
Exp. 6.3 [superscript 13]C NMR Spectra with SEFT p. 167
Exp. 6.4 [superscript 13]C NMR Spectra with APT p. 170
Exp. 6.5 The Basic INEPT Technique p. 173
Exp. 6.6 INEPT+ p. 176
Exp. 6.7 Refocused INEPT p. 179
Exp. 6.8 Reverse INEPT p. 182
Exp. 6.9 DEPT-135 p. 185
Exp. 6.10 Editing [superscript 13]C NMR Spectra Using DEPT p. 188
Exp. 6.11 DEPTQ p. 191
Exp. 6.12 Multiplicity Determination Using PENDANT p. 194
Exp. 6.13 1D-INADEQUATE p. 197
Exp. 6.14 The BIRD Filter p. 201
Exp. 6.15 TANGO p. 204
Exp. 6.16 The Heteronuclear Double-Quantum Filter p. 207
Exp. 6.17 Purging with a Spin-Lock Pulse p. 210
Exp. 6.18 Water Suppression by Presaturation p. 213
Exp. 6.19 Water Suppression by the Jump-and-Return Method p. 216
Chapter 7 NMR Spectroscopy with Selective Pulses p. 219
Exp. 7.1 Determination of a Shaped 90[degree] [superscript 1]H Transmitter Pulse p. 220
Exp. 7.2 Determination of a Shaped 90[degree] [superscript 1]H Decoupler Pulse p. 223
Exp. 7.3 Determination of a Shaped 90[degree] [superscript 13]C Decoupler Pulse p. 226
Exp. 7.4 Selective Excitation Using DANTE p. 229
Exp. 7.5 SELCOSY p. 232
Exp. 7.6 SELINCOR: Selective Inverse H,C Correlation via [superscript 1]J(C,H) p. 235
Exp. 7.7 SELINQUATE p. 238
Exp. 7.8 Selective TOCSY p. 242
Exp. 7.9 INAPT p. 246
Exp. 7.10 Determination of Long-Range C,H Coupling Constants p. 249
Exp. 7.11 SELRESOLV p. 252
Exp. 7.12 SERF p. 255
Chapter 8 Auxiliary Reagents, Quantitative Determinations, and Reaction Mechanisms p. 258
Exp. 8.1 Signal Separation Using a Lanthanide Shift Reagent p. 259
Exp. 8.2 Signal Separation of Enantiomers Using a Chiral Shift Reagent p. 262
Exp. 8.3 Signal Separation of Enantiomers Using a Chiral Solvating Agent p. 265
Exp. 8.4 Determination of Enantiomeric Purity with Pirkle's Reagent p. 268
Exp. 8.5 Determination of Enantiomeric Purity by [superscript 31]P NMR p. 271
Exp. 8.6 Determination of Absolute Configuration by the Advanced Mosher Method p. 274
Exp. 8.7 Aromatic Solvent-Induced Shift (ASIS) p. 277
Exp. 8.8 NMR Spectroscopy of OH Protons and H/D Exchange p. 280
Exp. 8.9 Water Suppression Using an Exchange Reagent p. 283
Exp. 8.10 Isotope Effects on Chemical Shielding p. 286
Exp. 8.11 pK[subscript a] Determination by [superscript 13]C NMR p. 290
Exp. 8.12 Determination of Association Constants K[subscript a] p. 293
Exp. 8.13 Saturation Transfer Difference NMR p. 298
Exp. 8.14 The Relaxation Reagent Cr(acac)[subscript 3] p. 302
Exp. 8.15 Determination of Paramagnetic Susceptibility by NMR p. 305
Exp. 8.16 [superscript 1]H and [superscript 13]C NMR of Paramagnetic Compounds p. 308
Exp. 8.17 The CIDNP Effect p. 312
Exp. 8.18 Quantitative [superscript 1]H NMR Spectroscopy: Determination of the Alcohol Content of Polish Vodka p. 315
Exp. 8.19 Quantitative [superscript 13]C NMR Spectroscopy with Inverse Gated [superscript 1]H-Decoupling p. 318
Exp. 8.20 NMR Using Liquid-Crystal Solvents p. 321
Chapter 9 Heteronuclear NMR Spectroscopy p. 324
Exp. 9.1 [superscript 1]H-Decoupled [superscript 15]N NMR Spectra Using DEPT p. 330
Exp. 9.2 [superscript 1]H-Coupled [superscript 15]N NMR Spectra Using DEPT p. 333
Exp. 9.3 [superscript 19]F NMR Spectroscopy p. 336
Exp. 9.4 [superscript 29]Si NMR Spectroscopy Using DEPT p. 339
Exp. 9.5 [superscript 29]Si NMR Spectroscopy Using Spin-Lock Polarization p. 342
Exp. 9.6 [superscript 119]Sn NMR Spectroscopy p. 346
Exp. 9.7 [superscript 2]H NMR Spectroscopy p. 349
Exp. 9.8 [superscript 11]B NMR Spectroscopy p. 352
Exp. 9.9 [superscript 17]O NMR Spectroscopy Using RIDE p. 355
Exp. 9.10 [superscript 47/49]Ti NMR Spectroscopy Using ARING p. 358
Chapter 10 The Second Dimension p. 362
Exp. 10.1 2D J-Resolved [superscript 1]H NMR Spectroscopy p. 367
Exp. 10.2 2D J-Resolved [superscript 13]C NMR Spectroscopy p. 370
Exp. 10.3 The Basic H,H-COSY Experiment p. 373
Exp. 10.4 Long-Range COSY p. 377
Exp. 10.5 Phase-Sensitive COSY p. 380
Exp. 10.6 Phase-Sensitive COSY-45 p. 383
Exp. 10.7 E.COSY p. 386
Exp. 10.8 Double-Quantum-Filtered COSY with Presaturation p. 389
Exp. 10.9 Fully Coupled C,H Correlation (FUCOUP) p. 393
Exp. 10.10 C,H-Correlation by Polarization Transfer (HETCOR) p. 396
Exp. 10.11 Long-Range C,H-Correlation by Polarization Transfer p. 399
Exp. 10.12 C,H Correlation via Long-Range Couplings (COLOC) p. 402
Exp. 10.13 The Basic HMQC Experiment p. 405
Exp. 10.14 Phase-Sensitive HMQC with BIRD Filter and GARP Decoupling p. 409
Exp. 10.15 Poor Man's Gradient HMQC p. 412
Exp. 10.16 Phase-Sensitive HMBC with BIRD Filter p. 415
Exp. 10.17 The Basic HSQC Experiment p. 418
Exp. 10.18 The HOHAHA or TOCSY Experiment p. 422
Exp. 10.19 HETLOC p. 426
Exp. 10.20 The NOESY Experiment p. 430
Exp. 10.21 The CAMELSPIN or ROESY Experiment p. 434
Exp. 10.22 The HOESY Experiment p. 438
Exp. 10.23 2D-INADEQUATE p. 441
Exp. 10.24 The EXSY Experiment p. 445
Exp. 10.25 X,Y-Correlation p. 448
Chapter 11 1D NMR Spectroscopy with Pulsed Field Gradients p. 453
Exp. 11.1 Calibration of Pulsed Field Gradients p. 455
Exp. 11.2 Gradient Pre-emphasis p. 458
Exp. 11.3 Gradient Amplifier Test p. 461
Exp. 11.4 Determination of Pulsed Field Gradient Ring-Down Delays p. 464
Exp. 11.5 The Pulsed Field Gradient Spin-Echo Experiment p. 467
Exp. 11.6 Excitation Pattern of Selective Pulses p. 470
Exp. 11.7 The Gradient Heteronuclear Double-Quantum Filter p. 474
Exp. 11.8 The Gradient zz-Filter p. 477
Exp. 11.9 The Gradient-Selected Dual Step Low-Pass Filter p. 480
Exp. 11.10 gs-SELCOSY p. 484
Exp. 11.11 gs-SELTOCSY p. 488
Exp. 11.12 DPFGSE-NOE p. 492
Exp. 11.13 gs-SELINCOR p. 496
Exp. 11.14 [alpha]/[beta]-SELINCOR-TOCSY p. 499
Exp. 11.15 GRECCO p. 503
Exp. 11.16 WATERGATE p. 506
Exp. 11.17 Water Suppression by Excitation Sculpting p. 509
Exp. 11.18 Solvent Suppression Using WET p. 512
Exp. 11.19 DOSY p. 515
Exp. 11.20 INEPT-DOSY p. 518
Exp. 11.21 DOSY-HMQC p. 521
Chapter 12 2D NMR Spectroscopy With Field Gradients p. 525
Exp. 12.1 gs-COSY p. 526
Exp. 12.2 Constant-Time COSY p. 530
Exp. 12.3 Phase-Sensitive gs-DQF-COSY p. 534
Exp. 12.4 gs-HMQC p. 538
Exp. 12.5 gs-HMBC p. 542
Exp. 12.6 ACCORD-HMBC p. 546
Exp. 12.7 HMSC p. 550
Exp. 12.8 Phase-Sensitive gs-HSQC with Sensitivity Enhancement p. 554
Exp. 12.9 Edited HSQC with Sensitivity Enhancement p. 558
Exp. 12.10 HSQC with Adiabatic Pulses for High-Field Instruments p. 563
Exp. 12.11 gs-TOCSY p. 567
Exp. 12.12 gs-HMQC-TOCSY p. 571
Exp. 12.13 gs-HETLOC p. 575
Exp. 12.14 gs-J-Resolved HMBC p. 581
Exp. 12.15 2Q-HMBC p. 585
Exp. 12.16 [superscript 1]H-Detected 2D INEPT-INADEQUATE p. 589
Exp. 12.17 1,1-ADEQUATE p. 593
Exp. 12.18 1,n-ADEQUATE p. 597
Exp. 12.19 gs-NOESY p. 601
Exp. 12.20 gs-HSQC-NOESY p. 604
Exp. 12.21 gs-HOESY p. 608
Exp. 12.22 [superscript 1]H, [superscript 15]N Correlation with gs-HMQC p. 612
Chapter 13 The Third Dimension p. 616
Exp. 13.1 3D HMQC-COSY p. 618
Exp. 13.2 3D gs-HSQC-TOCSY p. 622
Exp. 13.3 3D H,C,P-Correlation p. 626
Exp. 13.4 3D HMBC p. 630
Chapter 14 Solid-State NMR Spectroscopy p. 634
Exp. 14.1 Shimming Solid-State Probe-Heads p. 635
Exp. 14.2 Adjusting the Magic Angle p. 639
Exp. 14.3 Hartmann-Hahn Matching p. 642
Exp. 14.4 The Basic CP/MAS Experiment p. 645
Exp. 14.5 TOSS p. 649
Exp. 14.6 SELTICS p. 653
Exp. 14.7 Connectivity Determination in the Solid State p. 656
Exp. 14.8 REDOR p. 659
Exp. 14.9 High-Resolution Magic-Angle Spinning p. 663
Chapter 15 Protein NMR p. 666
Exp. 15.1 Pulse Determination for Protein NMR p. 670
Exp. 15.2 HN-HSQC p. 673
Exp. 15.3 HC-HSQC p. 678
Exp. 15.4 MUSIC p. 682
Exp. 15.5 HN-Correlation using TROSY p. 688
Exp. 15.6 HN-TOCSY-HSQC p. 692
Exp. 15.7 HNCA p. 698
Exp. 15.8 HN(CO)CA p. 705
Exp. 15.9 HNCO p. 711
Exp. 15.10 HN(CA)CO p. 718
Exp. 15.11 HCACO p. 725
Exp. 15.12 HCCH-TOCSY p. 732
Exp. 15.13 CBCANH p. 739
Exp. 15.14 CBCA(CO)NH p. 746
Exp. 15.15 HBHA(CBCACO)NH p. 753
Exp. 15.16 HN(CA)NNH p. 760
Exp. 15.17 HN-NOESY-HSQC p. 766
Exp. 15.18 HC-NOESY-HSQC p. 773
Exp. 15.19 3D HCN-NOESY p. 779
Exp. 15.20 HNCA-J p. 785
Appendix 1 Pulse Programs p. 791
Appendix 2 Instrument Dialects p. 794
Appendix 3 Classification of Experiments p. 797
Appendix 4 Elementary Product Operator Formalism Rules p. 799
Appendix 5 Chemical Shift and Spin-Coupling Data for Ethyl Crotonate and Strychnine p. 802
Glossary and Index p. 804
Chapter 1 The NMR Spectrometer p. 1
1.1 Components of an NMR Spectrometer p. 1
1.1.1 The Magnet p. 1
1.1.2 The Spectrometer Cabinet p. 2
1.1.3 The Computer p. 3
1.1.4 Maintenance p. 3
1.2 Tuning a Probe-Head p. 3
1.3 The Lock Channel p. 4
1.4 The Art of Shimming p. 6
1.4.1 The Shim Gradients p. 6
1.4.2 The Shimming Procedure p. 8
1.4.3 Gradient Shimming p. 11
Chapter 2 Determination of Pulse-Duration p. 14
Exp. 2.1 Determination of the 90[degree] [superscript 1]H Transmitter Pulse-Duration p. 15
Exp. 2.2 Determination of the 90[degree] [superscript 13]C Transmitter Pulse-Duration p. 18
Exp. 2.3 Determination of the 90[degree] [superscript 1]H Decoupler Pulse-Duration p. 21
Exp. 2.4 The 90[degree] [superscript 1]H Pulse with Inverse Spectrometer Configuration p. 24
Exp. 2.5 The 90[degree] [superscript 13]C Decoupler Pulse with Inverse Configuration p. 27
Exp. 2.6 Composite Pulses p. 30
Exp. 2.7 Radiation Damping p. 33
Exp. 2.8 Pulse and Receiver Phases p. 36
Exp. 2.9 Determination of Radiofrequency Power p. 39
Chapter 3 Routine NMR Spectroscopy and Standard Tests p. 43
Exp. 3.1 The Standard [superscript 1]H NMR Experiment p. 44
Exp. 3.2 The Standard [superscript 13]C NMR Experiment p. 49
Exp. 3.3 The Application of Window Functions p. 54
Exp. 3.4 Computer-Aided Spectral Analysis p. 58
Exp. 3.5 Line Shape Test for [superscript 1]H NMR Spectroscopy p. 61
Exp. 3.6 Resolution Test for [superscript 1]H NMR Spectroscopy p. 64
Exp. 3.7 Sensitivity Test for [superscript 1]H NMR Spectroscopy p. 67
Exp. 3.8 Line Shape Test for [superscript 13]C NMR Spectroscopy p. 70
Exp. 3.9 ASTM Sensitivity Test for [superscript 13]C NMR Spectroscopy p. 73
Exp. 3.10 Sensitivity Test for [superscript 13]C NMR Spectroscopy p. 76
Exp. 3.11 Quadrature Image Test p. 79
Exp. 3.12 Dynamic Range Test for Signal Amplitudes p. 82
Exp. 3.13 13[degree] Phase Stability Test p. 85
Exp. 3.14 Radiofrequency Field Homogeneity p. 88
Chapter 4 Decoupling Techniques p. 91
Exp. 4.1 Decoupler Calibration for Homonuclear Decoupling p. 92
Exp. 4.2 Decoupler Calibration for Heteronuclear Decoupling p. 95
Exp. 4.3 Low-Power Calibration for Heteronuclear Decoupling p. 98
Exp. 4.4 Homonuclear Decoupling p. 101
Exp. 4.5 Homonuclear Decoupling at Two Frequencies p. 104
Exp. 4.6 The Homonuclear SPT Experiment p. 107
Exp. 4.7 The Heteronuclear SPT Experiment p. 110
Exp. 4.8 The Basic Homonuclear NOE Difference Experiment p. 113
Exp. 4.9 1D Nuclear Overhauser Difference Spectroscopy p. 116
Exp. 4.10 1D NOE Spectroscopy with Multiple Selective Irradiation p. 119
Exp. 4.11 [superscript 1]H Off-Resonance Decoupled [superscript 13]C NMR Spectra p. 122
Exp. 4.12 The Gated [superscript 1]H-Decoupling Technique p. 125
Exp. 4.13 The Inverse Gated [superscript 1]H-Decoupling Technique p. 128
Exp. 4.14 [superscript 1]H Single-Frequency Decoupling of [superscript 13]C NMR Spectra p. 131
Exp. 4.15 [superscript 1]H Low-Power Decoupling of [superscript 13]C NMR Spectra p. 134
Exp. 4.16 Measurement of the Heteronuclear Overhauser Effect p. 137
Chapter 5 Dynamic NMR Spectroscopy p. 140
Exp. 5.1 Low-Temperature Calibration Using Methanol p. 141
Exp. 5.2 High-Temperature Calibration Using 1,2-Ethanediol p. 145
Exp. 5.3 Dynamic [superscript 1]H NMR Spectroscopy on Dimethylformamide p. 149
Exp. 5.4 The Saturation Transfer Experiment p. 152
Exp. 5.5 Measurement of the Rotating-Frame Relaxation Time T[subscript 1 rho] p. 155
Chapter 6 1D Multipulse Sequences p. 159
Exp. 6.1 Measurement of the Spin-Lattice Relaxation Time T[subscript 1] p. 160
Exp. 6.2 Measurement of the Spin-Spin Relaxation Time T[subscript 2] p. 164
Exp. 6.3 [superscript 13]C NMR Spectra with SEFT p. 167
Exp. 6.4 [superscript 13]C NMR Spectra with APT p. 170
Exp. 6.5 The Basic INEPT Technique p. 173
Exp. 6.6 INEPT+ p. 176
Exp. 6.7 Refocused INEPT p. 179
Exp. 6.8 Reverse INEPT p. 182
Exp. 6.9 DEPT-135 p. 185
Exp. 6.10 Editing [superscript 13]C NMR Spectra Using DEPT p. 188
Exp. 6.11 DEPTQ p. 191
Exp. 6.12 Multiplicity Determination Using PENDANT p. 194
Exp. 6.13 1D-INADEQUATE p. 197
Exp. 6.14 The BIRD Filter p. 201
Exp. 6.15 TANGO p. 204
Exp. 6.16 The Heteronuclear Double-Quantum Filter p. 207
Exp. 6.17 Purging with a Spin-Lock Pulse p. 210
Exp. 6.18 Water Suppression by Presaturation p. 213
Exp. 6.19 Water Suppression by the Jump-and-Return Method p. 216
Chapter 7 NMR Spectroscopy with Selective Pulses p. 219
Exp. 7.1 Determination of a Shaped 90[degree] [superscript 1]H Transmitter Pulse p. 220
Exp. 7.2 Determination of a Shaped 90[degree] [superscript 1]H Decoupler Pulse p. 223
Exp. 7.3 Determination of a Shaped 90[degree] [superscript 13]C Decoupler Pulse p. 226
Exp. 7.4 Selective Excitation Using DANTE p. 229
Exp. 7.5 SELCOSY p. 232
Exp. 7.6 SELINCOR: Selective Inverse H,C Correlation via [superscript 1]J(C,H) p. 235
Exp. 7.7 SELINQUATE p. 238
Exp. 7.8 Selective TOCSY p. 242
Exp. 7.9 INAPT p. 246
Exp. 7.10 Determination of Long-Range C,H Coupling Constants p. 249
Exp. 7.11 SELRESOLV p. 252
Exp. 7.12 SERF p. 255
Chapter 8 Auxiliary Reagents, Quantitative Determinations, and Reaction Mechanisms p. 258
Exp. 8.1 Signal Separation Using a Lanthanide Shift Reagent p. 259
Exp. 8.2 Signal Separation of Enantiomers Using a Chiral Shift Reagent p. 262
Exp. 8.3 Signal Separation of Enantiomers Using a Chiral Solvating Agent p. 265
Exp. 8.4 Determination of Enantiomeric Purity with Pirkle's Reagent p. 268
Exp. 8.5 Determination of Enantiomeric Purity by [superscript 31]P NMR p. 271
Exp. 8.6 Determination of Absolute Configuration by the Advanced Mosher Method p. 274
Exp. 8.7 Aromatic Solvent-Induced Shift (ASIS) p. 277
Exp. 8.8 NMR Spectroscopy of OH Protons and H/D Exchange p. 280
Exp. 8.9 Water Suppression Using an Exchange Reagent p. 283
Exp. 8.10 Isotope Effects on Chemical Shielding p. 286
Exp. 8.11 pK[subscript a] Determination by [superscript 13]C NMR p. 290
Exp. 8.12 Determination of Association Constants K[subscript a] p. 293
Exp. 8.13 Saturation Transfer Difference NMR p. 298
Exp. 8.14 The Relaxation Reagent Cr(acac)[subscript 3] p. 302
Exp. 8.15 Determination of Paramagnetic Susceptibility by NMR p. 305
Exp. 8.16 [superscript 1]H and [superscript 13]C NMR of Paramagnetic Compounds p. 308
Exp. 8.17 The CIDNP Effect p. 312
Exp. 8.18 Quantitative [superscript 1]H NMR Spectroscopy: Determination of the Alcohol Content of Polish Vodka p. 315
Exp. 8.19 Quantitative [superscript 13]C NMR Spectroscopy with Inverse Gated [superscript 1]H-Decoupling p. 318
Exp. 8.20 NMR Using Liquid-Crystal Solvents p. 321
Chapter 9 Heteronuclear NMR Spectroscopy p. 324
Exp. 9.1 [superscript 1]H-Decoupled [superscript 15]N NMR Spectra Using DEPT p. 330
Exp. 9.2 [superscript 1]H-Coupled [superscript 15]N NMR Spectra Using DEPT p. 333
Exp. 9.3 [superscript 19]F NMR Spectroscopy p. 336
Exp. 9.4 [superscript 29]Si NMR Spectroscopy Using DEPT p. 339
Exp. 9.5 [superscript 29]Si NMR Spectroscopy Using Spin-Lock Polarization p. 342
Exp. 9.6 [superscript 119]Sn NMR Spectroscopy p. 346
Exp. 9.7 [superscript 2]H NMR Spectroscopy p. 349
Exp. 9.8 [superscript 11]B NMR Spectroscopy p. 352
Exp. 9.9 [superscript 17]O NMR Spectroscopy Using RIDE p. 355
Exp. 9.10 [superscript 47/49]Ti NMR Spectroscopy Using ARING p. 358
Chapter 10 The Second Dimension p. 362
Exp. 10.1 2D J-Resolved [superscript 1]H NMR Spectroscopy p. 367
Exp. 10.2 2D J-Resolved [superscript 13]C NMR Spectroscopy p. 370
Exp. 10.3 The Basic H,H-COSY Experiment p. 373
Exp. 10.4 Long-Range COSY p. 377
Exp. 10.5 Phase-Sensitive COSY p. 380
Exp. 10.6 Phase-Sensitive COSY-45 p. 383
Exp. 10.7 E.COSY p. 386
Exp. 10.8 Double-Quantum-Filtered COSY with Presaturation p. 389
Exp. 10.9 Fully Coupled C,H Correlation (FUCOUP) p. 393
Exp. 10.10 C,H-Correlation by Polarization Transfer (HETCOR) p. 396
Exp. 10.11 Long-Range C,H-Correlation by Polarization Transfer p. 399
Exp. 10.12 C,H Correlation via Long-Range Couplings (COLOC) p. 402
Exp. 10.13 The Basic HMQC Experiment p. 405
Exp. 10.14 Phase-Sensitive HMQC with BIRD Filter and GARP Decoupling p. 409
Exp. 10.15 Poor Man's Gradient HMQC p. 412
Exp. 10.16 Phase-Sensitive HMBC with BIRD Filter p. 415
Exp. 10.17 The Basic HSQC Experiment p. 418
Exp. 10.18 The HOHAHA or TOCSY Experiment p. 422
Exp. 10.19 HETLOC p. 426
Exp. 10.20 The NOESY Experiment p. 430
Exp. 10.21 The CAMELSPIN or ROESY Experiment p. 434
Exp. 10.22 The HOESY Experiment p. 438
Exp. 10.23 2D-INADEQUATE p. 441
Exp. 10.24 The EXSY Experiment p. 445
Exp. 10.25 X,Y-Correlation p. 448
Chapter 11 1D NMR Spectroscopy with Pulsed Field Gradients p. 453
Exp. 11.1 Calibration of Pulsed Field Gradients p. 455
Exp. 11.2 Gradient Pre-emphasis p. 458
Exp. 11.3 Gradient Amplifier Test p. 461
Exp. 11.4 Determination of Pulsed Field Gradient Ring-Down Delays p. 464
Exp. 11.5 The Pulsed Field Gradient Spin-Echo Experiment p. 467
Exp. 11.6 Excitation Pattern of Selective Pulses p. 470
Exp. 11.7 The Gradient Heteronuclear Double-Quantum Filter p. 474
Exp. 11.8 The Gradient zz-Filter p. 477
Exp. 11.9 The Gradient-Selected Dual Step Low-Pass Filter p. 480
Exp. 11.10 gs-SELCOSY p. 484
Exp. 11.11 gs-SELTOCSY p. 488
Exp. 11.12 DPFGSE-NOE p. 492
Exp. 11.13 gs-SELINCOR p. 496
Exp. 11.14 [alpha]/[beta]-SELINCOR-TOCSY p. 499
Exp. 11.15 GRECCO p. 503
Exp. 11.16 WATERGATE p. 506
Exp. 11.17 Water Suppression by Excitation Sculpting p. 509
Exp. 11.18 Solvent Suppression Using WET p. 512
Exp. 11.19 DOSY p. 515
Exp. 11.20 INEPT-DOSY p. 518
Exp. 11.21 DOSY-HMQC p. 521
Chapter 12 2D NMR Spectroscopy With Field Gradients p. 525
Exp. 12.1 gs-COSY p. 526
Exp. 12.2 Constant-Time COSY p. 530
Exp. 12.3 Phase-Sensitive gs-DQF-COSY p. 534
Exp. 12.4 gs-HMQC p. 538
Exp. 12.5 gs-HMBC p. 542
Exp. 12.6 ACCORD-HMBC p. 546
Exp. 12.7 HMSC p. 550
Exp. 12.8 Phase-Sensitive gs-HSQC with Sensitivity Enhancement p. 554
Exp. 12.9 Edited HSQC with Sensitivity Enhancement p. 558
Exp. 12.10 HSQC with Adiabatic Pulses for High-Field Instruments p. 563
Exp. 12.11 gs-TOCSY p. 567
Exp. 12.12 gs-HMQC-TOCSY p. 571
Exp. 12.13 gs-HETLOC p. 575
Exp. 12.14 gs-J-Resolved HMBC p. 581
Exp. 12.15 2Q-HMBC p. 585
Exp. 12.16 [superscript 1]H-Detected 2D INEPT-INADEQUATE p. 589
Exp. 12.17 1,1-ADEQUATE p. 593
Exp. 12.18 1,n-ADEQUATE p. 597
Exp. 12.19 gs-NOESY p. 601
Exp. 12.20 gs-HSQC-NOESY p. 604
Exp. 12.21 gs-HOESY p. 608
Exp. 12.22 [superscript 1]H, [superscript 15]N Correlation with gs-HMQC p. 612
Chapter 13 The Third Dimension p. 616
Exp. 13.1 3D HMQC-COSY p. 618
Exp. 13.2 3D gs-HSQC-TOCSY p. 622
Exp. 13.3 3D H,C,P-Correlation p. 626
Exp. 13.4 3D HMBC p. 630
Chapter 14 Solid-State NMR Spectroscopy p. 634
Exp. 14.1 Shimming Solid-State Probe-Heads p. 635
Exp. 14.2 Adjusting the Magic Angle p. 639
Exp. 14.3 Hartmann-Hahn Matching p. 642
Exp. 14.4 The Basic CP/MAS Experiment p. 645
Exp. 14.5 TOSS p. 649
Exp. 14.6 SELTICS p. 653
Exp. 14.7 Connectivity Determination in the Solid State p. 656
Exp. 14.8 REDOR p. 659
Exp. 14.9 High-Resolution Magic-Angle Spinning p. 663
Chapter 15 Protein NMR p. 666
Exp. 15.1 Pulse Determination for Protein NMR p. 670
Exp. 15.2 HN-HSQC p. 673
Exp. 15.3 HC-HSQC p. 678
Exp. 15.4 MUSIC p. 682
Exp. 15.5 HN-Correlation using TROSY p. 688
Exp. 15.6 HN-TOCSY-HSQC p. 692
Exp. 15.7 HNCA p. 698
Exp. 15.8 HN(CO)CA p. 705
Exp. 15.9 HNCO p. 711
Exp. 15.10 HN(CA)CO p. 718
Exp. 15.11 HCACO p. 725
Exp. 15.12 HCCH-TOCSY p. 732
Exp. 15.13 CBCANH p. 739
Exp. 15.14 CBCA(CO)NH p. 746
Exp. 15.15 HBHA(CBCACO)NH p. 753
Exp. 15.16 HN(CA)NNH p. 760
Exp. 15.17 HN-NOESY-HSQC p. 766
Exp. 15.18 HC-NOESY-HSQC p. 773
Exp. 15.19 3D HCN-NOESY p. 779
Exp. 15.20 HNCA-J p. 785
Appendix 1 Pulse Programs p. 791
Appendix 2 Instrument Dialects p. 794
Appendix 3 Classification of Experiments p. 797
Appendix 4 Elementary Product Operator Formalism Rules p. 799
Appendix 5 Chemical Shift and Spin-Coupling Data for Ethyl Crotonate and Strychnine p. 802
Glossary and Index p. 804
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×