副标题:无

作   者:

分类号:

ISBN:9781584887782

微信扫一扫,移动浏览光盘

简介

Summary: Publisher Summary 1 Editors Jaroszynski (physics, U. of Strathclyde, UK), Bingham (physics, U. of Strathclyde, UK) and Cairns (applied mathematics, U. of St. Andrews, UK) have collected these papers on laser-plasma interactions from the 60th Scottish Universities Summer School in Physics for fellow researchers in the field. Expert contributors cover such topics as progress in fast ignition, fusion targets, fundamentals of ICF Hohlraums, direct-drive inertial fusion and the acceleration of photons and quasi-particles. The theory and experimental results of ablative Richtmyer-Meshkov instability is also presented. Annotation 漏2009 Book News, Inc., Portland, OR (booknews.com)  

目录

Table Of Contents:
Preface xvii
1 Laser-Driven Plasmas: a Gateway to High Energy Density Physics and a Test-Bed for Nonlinear Science

William L. Kruer 1

1 Introduction 1

2 High energy density physics 2

2.1 Definition and examples of high energy density physics 2

2.2 Enabling technology: high power lasers and other drivers 5

2.3 Enabling technology: diagnostics and integrated modeling 6

3 Laser plasma physics 8

3.1 Energy transfer between crossing laser beams 9

3.2 Laser beam deflection in nonlinearly generated plasma flow profiles 11

3.3 Kinetic effects on laser plasma instability evolution 14

4 Summary 16
2 An Experimentalist's Perspective on Plasma Accelerators

Christopher E. Clayton 19

1 Introduction 19

2 Pursuing experimental goals 20

3 Plasma-accelerator laboratories 21

3.1 A laser wakefield acceleration experiment 23

3.2 The plasma wakefield acceleration experiment at SLAC 25

4 Diagnostics in theory and practice 27

5 Laser diagnostics 27

6 Plasma diagnostics 31

6.1 'Thomson scattering 31

6.2 Refractive index description 37

7 Plasma wave diagnostics 40

7.1 Forward scattering at 0掳 incident angle 40

7.2 Forward scattering near 90掳 incident angle 43

7.3 Photon acceleration 46

7.4 Spectral interferometry 48

7.5 Frequency-domain holography 56

8 Electron diagnostics 61

8.1 Electron beam or bunch parameters 62

8.2 Basic measurements 65

8.3 General properties of radiation from electrons 68

8.4 Radiation-based electron measurements 69

9 Conclusions 73
3 Waveguides for High-Intensity Laser Pulses

Simon Hooker 79

1 Introduction 79

2 Why are waveguides necessary? 79

2.1 Diffraction 79

2.2 Refractive defocusing 81

2.3 General properties of waveguides 82

3 Grazing-incidence waveguides 84

4 Plasma waveguides 86

4.1 Analysis of ideal parabolic channels 87

4.2 Techniques for generating plasma waveguides 89

5 Summary 98
4 Harnessing Plasma Waves as Radiation Sources and Amplifiers

D.A. Jaroszynski, Albert Reitsma and Bernhard Ersfeld 101

1 Introduction 101

2 Laser-plasma interactions 102

3 The laser-driven plasma wakefield accelerator 104

4 Plasma-based acceleration 105

5 Acceleration dynamics 110

6 Radiation source development 117

6.1 Synchrotron sources and free-electron lasers 118

6.2 Betatron radiation from plasma wakefield accelerator 128

7 Raman amplification 132

8 Three-wave interaction 132

9 Dispersion of scattered wave 133

10 Slowly varying envelope approximation 134

10.1 Low scattered amplitude 135

10.2 Pump depletion 136

10.3 Chirped pump, low scattered amplitude 137

11 Summary 139
5 High Intensity Laser-Plasma Interaction Experiments

Karl Krushelnick 143

1 Introduction 143

2 High harmonic emission 143

2.1 Basic experimental setup 144

2.2 Plasma diagnostics using harmonics 144

2.3 Magnetic field measurements 146

3 Electron acceleration using high intensity lasers 151

3.1 Self-modulated laser wakefield acceleration 151

3.2 Laser acceleration of electrons at intensities greater than 10虏潞 W/cm虏 153

3.3 Mono-energetic beam production using ultra-short pulses 157

4 Ion acceleration using short laser pulses 159

4.1 Observations of ions from the "front" of laser solid interactions 160

4.2 Ions and protons from the rear of laser interactions with thin foil targets 164

4.3 Ions from laser interactions with underdense plasmas 168

5 Conclusions 169
6 Computational Challenges in Laser-Plasma Interactions

Ricardo Fonseca 173

1 Introduction 173

2 Simulating plasmas 174

3 Numerical models 175

4 Particle-in-Cell algorithm 176

4.1 Particle pusher 177

4.2 Current deposition 178

4.3 Field solver 179

4.4 Normalization 181

5 Applications 182

6 Conclusions 183
7 Particle Acceleration in Plasmas

R. Bingham 185

1 Introduction 185

2 High energy plasma accelerators 186

3 Relativistic plasma wave acceleration 188

4 Plasma beat wave accelerator 189

5 Laser wakefield accelerator 193

6 Equations describing laser wakefield 194

7 Self-modulated laser wakefield accelerator 196

8 Particle beam driven plasma wakefield accelerators (PWFA) 198

9 Photon acceleration 199

10 Relativistic self-focusing and optical guiding 200

11 Laser cluster/ target interactions 201

12 Conclusions and outlook 203
8 Laboratory Astrophysics Using High Energy Density Photon and Electron Beams

R. Bingham 211

1 Introduction 211

2 Generating neutron star atmospheres 212

3 Cosmic ray acceleration at energetic shocks 213

4 Electron-positron plasmas 214

5 Physics of type II supernovae 215
9 Acceleration of Photons and Quasi-Particles

J.T. Mendonea 219

1 Abstract 219

2 Introduction 219

3 Motion of quasi-particles 220

4 Electrostatic waves 221

5 Wave kinetic equation 222

6 Resonant contributions 223

7 Beam instabilities 224

8 Quasi-particle trapping 225

9 Plasmons and drawls 226

10 Conclusions 228
10 Relativistic Phenomena in Plasma Solitons

Francesco Pegoraro 231

1 Introduction 231

2 Relativistic plasma solitons 232

2.1 1-D analytical results 233

2.2 Analytical models and numerical results for higher-dimension relativistic subcycle solitons 234

2.3 Subcycle soliton evolution 239

3 Experimental detection of relativistic solitons 242

3.1 Post-soliton detection by proton imaging techniques 242

4 Attosecond pulse generation 245

4.1 1-D Analytic results 246

4.2 2-D Particle-in-Cell simulation results 246
11 Interference Stabilization of Atoms in a Strong Laser Field

M.V. Fedorov 251

1 Introduction 251

2 Definitions of stabilization 251

3 Rydberg atoms 254

4 Quasiclassical dipole matrix elements 255

5 Qualitative explanation of the IS physics 256

6 Two-level model 257

7 Quasienergies 259

8 Multilevel system of Rydberg levels 261

9 Degeneracy of Rydberg levels 263

10 A fully quasiclassical approach 266

11 Experiment 268

12 Two-color interference stabilization 269

13 Conclusion 273
12 Entanglement and Wave Packet Structures in Photoionization and Other Decay Processes of Bipartite Systems

M.V. Fedorov 275

1 Introduction 275

2 General consideration 277

2.1 Definitions: entanglement, coincidence and single-particle measurements, conditional and unconditional probabilities 277

2.2 Double-Gaussian bipartite wave function 278

2.3 Double-Gaussian conditional and unconditional wave packet widths 279

2.4 The Schmidt number 280

2.5 Double-Gaussian wave packets in the momentum representation 281

2.6 Identity. reciprocity, and uncertainty relations 281

3 Photoionization of atoms and photodissociation of molecules 282

4 Spontaneous emission of a photon by an atom 286

5 Parametric down-conversion (PDC) 287

6 Multiphoton pair production 291

7 Conclusion 294
13 Intense Field Quantum Electrodynamics

Nikolay Narozhny 297

1 Introduction 297

1.1 What is "strong field" in QED? 297

1.2 How far we are from the QED ''strong field"? 300

2 Quantum processes in a plane wave field 301

2.1 Furry picture 301

2.2 Volkov solutions for Dirac equation for an electron in a laser field 302

3 Simplest processes (theory and experiment) 305

3.1 Nonlinear Compton scattering 305

3.2 Photoproduction of a e鈥攅+-pairs 308

4 A short focused laser pulse 311

5 Ponderomotive effect 315

5.1 Nonrelativistic analysis 315

5.2 Equations of average motion of a relativistic electron 316

5.3 Ponderomotive scattering of electrons by a focused laser pulse of relativistic intensity 318

6 Pair creation by a focused laser pulse in vacuum 320

7 Conclusions 323
14 Fundamentals of ICF Hohlraums

Mordecai ("Mordy") D. Rosen 325

1 Basic physics 325

1.1 History of hohlraums 326

1.2 Radiation transport 320

1.3 Solving the diffusion equation 331

1.4 Solving for the Albedo 335

` 1.5 Solving for the hohlraum temperature 338

2 Hohlraum optimization 341

2.1 Cocktails 341

2.2 Foam-walled hohlraums 343

2.3 Hohlramns with axial shine shields 345

3 Applications of hohlraums to ICF 348

3.1 Gain calculation: conventional and fast ignitor 348

3.2 Pulse shaping 340

4 Conclusions 350
15 Dense Plasma Physics 鈥?the Micro Physics of Laser-Produced Plasmas

S.J. Rose 353

1 Introduction 353

2 Non-equilibrium microphysics 353

3 Equilibrium microphysics 357

4 Conclusion 360

5 Acknowledgements 360
16 Progress in Fast Ignition

Peter A. Norreys 361

1 Introduction 361

1.1 Background 361

1.2 Inertial confinement fusion 362

1.3 The fast ignition concept 363

1.4 The cone-guided and cone-focused concepts 364

2 Fast electron energy transport 365

2.1 Background 365

2.2 Absorption processes 366

2.3 Alfv猫n-Lawson current limit 367

2.4 Weibel instability 367

2.5 Two-stream and filamentation instabilities 369

2.6 Filament coalesence and stochastic electron motion 370

2.7 A two-step process for ion heating in fast ignition 370

2.8 Collimation, beam hollowing and annular transport 371

3 Computational modelling 373

4 Conclusions 373
17 Fusion Targets

Damian C. Swift 377

1 Introduction 377

2 Ablator material and microstructures 378

3 Continuum mechanics and shock physics 381

4 Properties of the ablator material 385

4.1 Equation of state and phase diagram of beryllium 385

4.2 Plasticity of beryllium 393

5 Instability seeding from the microstructure 396

5.1 Experiments resolving microstructural response 396

5.2 Simulations of microstructural effects 397

5.3 Experiments measuring instability growth 399

6 Conclusions 405
18 Direct-Drive Inertial Fusion: Basic Concepts and Ignition Target Designing

Valeri N. Goncharov 409

1 Introduction 409

2 Basic concepts 410

3 Direct-drive ignition target design 412

4 Stability 416

5 Acknowledgements 417
19 Ablative Richtmyer-Meshkov Instability: Theory and Experimental Results

Valeri N. Goncharov 419

1 Introduction 419

2 One-dimensional flow 420

3 Perturbation evolution: theory 421

3.1 Classical case without ablation 421

3.2 Effects of mass ablation 424

4 Perturbation evolution: experiment 426

5 Acknowledgements 427
Index 429

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon