副标题:无

作   者:

分类号:

ISBN:9781584887263

微信扫一扫,移动浏览光盘

简介

Summary: Publisher Summary 1 Faticoni (mathematics, Fordham U.) explores advanced topics in direct sum decompositions of abelian groups and their consequences. He aims this primarily at those requiring a reference in isomorphism, endomorphism, refinement, the Baer splitting property, Gabriel filters and endomorphism modules. He includes exercises with answers and appendices on pathological direct sums, ACD groups, power cancellation, corner rings and modules, Corner's theorem, torsion/torsion-free groups, E-flat groups and other topics. This is eminently readable. Annotation 漏2007 Book News, Inc., Portland, OR (booknews.com)  

目录



Contents
0 Abstract iii
1 Notation and Preliminary Results 1
1.1 Abelian Groups . . . . . . . . . . . . . . . . . . . . . 1
1.2 Associative Rings . . . . . . . . . . . . . . . . . . . . 5
1.3 Local-global and Chinese Remainder . . . . . . . . . 9
1.4 Finite Dimensional Q-Algebras . . . . . . . . . . . . 11
1.5 Localization in Commutative Rings . . . . . . . . . . 13
1.6 Integrally Closed Rings . . . . . . . . . . . . . . . . . 15
1.7 Semi-perfect Rings . . . . . . . . . . . . . . . . . . . 17
1.8 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . 20
2 Motivation by Example 21
2.1 Some Well Behaved Direct Sums . . . . . . . . . . . 22
2.2 Some Badly Behaved Direct Sums . . . . . . . . . . . 27
2.3 Corner¿s Theorem . . . . . . . . . . . . . . . . . . . . 29
2.4 The Arnold-Lady-Murley Theorem . . . . . . . . . . 32
2.4.1 A Category Equivalence . . . . . . . . . . . . 32
2.4.2 The Functor A(·) . . . . . . . . . . . . . . . . 34
2.4.3 Elementary Uses of the Functors . . . . . . . 35
2.5 Local Isomorphism . . . . . . . . . . . . . . . . . . . 39
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7 Questions for Future Research . . . . . . . . . . . . . 50
3 Local Isomorphism is Isomorphism 53
3.1 Integrally Closed Rings . . . . . . . . . . . . . . . . . 53
3.2 The Conductor of an Rtffr Ring . . . . . . . . . . . . 58
3.3 A Local Correspondence . . . . . . . . . . . . . . . . 62
3.4 A Canonical Decomposition . . . . . . . . . . . . . . 67
xi
xii CONTENTS
3.5 Arnold¿s Theorem . . . . . . . . . . . . . . . . . . . . 69
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.7 Questions for Future Research . . . . . . . . . . . . . 74
4 Commuting Endomorphisms 77
4.1 Nilpotent sets . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Commutative Rtffr Rings . . . . . . . . . . . . . . . . 88
4.2.1 Modules over Commutative Rings . . . . . . . 88
4.2.2 Projectives over Commutative Rings . . . . . 92
4.2.3 Direct Sums Over Commutative Rings . . . . 94
4.2.4 Commutative Endomorphism Rings . . . . . . 95
4.3 E-Properties . . . . . . . . . . . . . . . . . . . . . . . 99
4.4 Square-free Ranks . . . . . . . . . . . . . . . . . . . . 103
4.4.1 Rank Two Groups . . . . . . . . . . . . . . . 104
4.4.2 Groups of Rank 3 . . . . . . . . . . . . . . 106
4.5 Refinement and Square-free Rank . . . . . . . . . . . 110
4.6 Hereditary Endomorphism Rings . . . . . . . . . . . 113
4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.8 Questions for Future Research . . . . . . . . . . . . . 115
5 Refinement Revisited 119
5.1 Counting Isomorphism Classes . . . . . . . . . . . . . 120
5.1.1 Class Groups and Class Numbers . . . . . . . 120
5.1.2 The Class Group of the Integral Closure . . . 122
5.1.3 Class Number and Refinement . . . . . . . . . 125
5.1.4 Quadratic Number Fields . . . . . . . . . . . 129
5.1.5 Counting Theorems . . . . . . . . . . . . . . . 130
5.2 Integrally Closed Groups . . . . . . . . . . . . . . . . 136
5.2.1 A Review Of Notation and Terminology . . . 137
5.2.2 Locally Semi-perfect Rings . . . . . . . . . . . 138
5.2.3 Semi-primary Rtffr Groups . . . . . . . . . . . 141
5.2.4 Applications to Refinement . . . . . . . . . . 145
5.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.4 Questions for Future Research . . . . . . . . . . . . . 150
6 The Baer Splitting Property 153
6.1 Baer¿s Lemma . . . . . . . . . . . . . . . . . . . . . . 154
6.2 The Splitting of Exact Sequences . . . . . . . . . . . 158
6.3 G-Compressed Projectives . . . . . . . . . . . . . . . 161CONTENTS xiii
6.4 Some Examples . . . . . . . . . . . . . . . . . . . . . 166
6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.6 Questions for Future Research . . . . . . . . . . . . . 170
7 J -groups, L-groups, and S-groups 171
7.1 Background on Ext . . . . . . . . . . . . . . . . . . . 171
7.2 Finite Projective Properties . . . . . . . . . . . . . . 173
7.3 Finitely Projective Groups . . . . . . . . . . . . . . . 175
7.4 Finitely Faithful S-groups . . . . . . . . . . . . . . . 179
7.5 Isomorphism versus Local Isomorphism . . . . . . . . 182
7.6 Some Analytic Number Theory . . . . . . . . . . . . 184
7.7 Rtffr L-Groups are J -Groups . . . . . . . . . . . . . 190
7.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.9 Questions for Future Research . . . . . . . . . . . . . 193
8 Gabriel Filters 195
8.1 Filters of Divisibility . . . . . . . . . . . . . . . . . . 195
8.1.1 Hereditary Torsion Classes . . . . . . . . . . . 197
8.1.2 Gabriel Filters of Right Ideals . . . . . . . . . 200
8.2 Idempotent Ideals . . . . . . . . . . . . . . . . . . . . 204
8.2.1 Traces of Covers . . . . . . . . . . . . . . . . 205
8.2.2 Bounded Gabriel Filters . . . . . . . . . . . . 210
8.2.3 Finite Filters of Divisibility . . . . . . . . . . 212
8.3 Gabriel Filters on Rtffr Rings . . . . . . . . . . . . . 217
8.3.1 Applications to Endomorphism Rings . . . . . 217
8.3.2 Constructing Examples . . . . . . . . . . . . . 220
8.3.3 Faithful Eings . . . . . . . . . . . . . . . . . . 222
8.4 Gabriel Filters on QEnd(G) . . . . . . . . . . . . . . 225
8.4.1 Central Quasi-summands . . . . . . . . . . . . 225
8.4.2 Q-faithful Groups . . . . . . . . . . . . . . . . 231
8.4.3 Q-faithful E-flat Groups . . . . . . . . . . . . 234
8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 235
8.6 Questions for Future Research . . . . . . . . . . . . . 239
9 Endomorphism Modules 241
9.1 Additive Structure of Rings . . . . . . . . . . . . . . 241
9.2 E-Properties . . . . . . . . . . . . . . . . . . . . . . . 244
9.2.1 E-Rings . . . . . . . . . . . . . . . . . . . . . 244
9.2.2 E-Finitely Generated Groups . . . . . . . . . 247
xiv CONTENTS
9.2.3 E-Projective Groups . . . . . . . . . . . . . . 253
9.2.4 E-Generator Groups . . . . . . . . . . . . . . 257
9.2.5 E-Projective Rtffr Groups Characterized . . . 259
9.2.6 Noetherian Endomorphism Modules . . . . . . 262
9.3 Homological Dimensions . . . . . . . . . . . . . . . . 266
9.3.1 E-Projective Dimensions . . . . . . . . . . . . 267
9.3.2 E-Flat Dimensions . . . . . . . . . . . . . . . 270
9.3.3 E-Injective Dimensions . . . . . . . . . . . . . 273
9.4 Self-injective Rings . . . . . . . . . . . . . . . . . . . 276
9.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 278
9.6 Questions for Future Research . . . . . . . . . . . . . 280
A Pathological Direct Sums 283
A.1 Nonunique Direct Sums . . . . . . . . . . . . . . . . 283
B An Acd Group Example 287
B.1 An Example by Corner . . . . . . . . . . . . . . . . . 287
C Power Cancellation 291
C.1 Failure of Power Cancellation . . . . . . . . . . . . . 291
D Cancellation 293
D.1 Failure of Cancellation . . . . . . . . . . . . . . . . . 293
E Corner Rings and Modules 297
E.1 Topological Preliminaries . . . . . . . . . . . . . . . . 297
E.2 The Construction of G . . . . . . . . . . . . . . . . . 299
E.3 Endomorphisms of G . . . . . . . . . . . . . . . . . . 301
F Corner¿s Theorem 305
F.1 Countable Rings as Endomorphism Rings . . . . . . . 305
G Torsion Torsion-free Groups 307
G.1 E-Torsion Groups . . . . . . . . . . . . . . . . . . . . 307
G.2 Self-small Corner Modules . . . . . . . . . . . . . . . 308
H E-flat Groups 311
H.1 Ubiquity . . . . . . . . . . . . . . . . . . . . . . . . . 311
H.2 Unfaithful Groups . . . . . . . . . . . . . . . . . . . . 312CONTENTS xv
I Zassenhaus and Butler 317
I.1 The Statement . . . . . . . . . . . . . . . . . . . . . 317
I.2 The Proof . . . . . . . . . . . . . . . . . . . . . . . . 318
J Countable E-Rings 323
J.1 Countable Torsion-free E-rings . . . . . . . . . . . . 323
K Dedekind E-Rings 329
K.1 Number Theoretic Preliminaries . . . . . . . . . . . . 329
K.2 Integrally Closed Rings . . . . . . . . . . . . . . . . . 330

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon