Combinatorics : topics, techniques, algorithms = 组合数学 : 专题、技术与算法 /
副标题:无
分类号:O157.1
ISBN:9787115210876
微信扫一扫,移动浏览光盘
简介
这本优秀的组合数学教材是作者20多年研究和教学经验的结晶。全书分
成初级篇和高级篇两个部分,共18章内容,每章都以“专题一技术一算法”
的模式呈现,阐述深入浅出,简明易懂。本书几乎涵盖了组合数学中所有有
趣的主题,如中国邮递员问题、中国的九连环问题、友谊定理等,当然也收
集了若干前沿内容。
本书适合作为高等院校高年级本科生与低年级研究生的组合数学课程教
材,也适合各理工学科科研人员参考。
目录
1. what is combinatorics? . 1
sample problems--how to use this book--what you need to know--exercises
2. on numbers and counting 7
natural numbers and arithmetic--induction--some useful functions--orders of magnitude--different ways of counting--double counting--appendix on set notation--exercises
3. subsets, partitions, permutations 21
subsets--subsets of fixed size--the binomial theorem and pascal's triangle--project: congruences of binomial coefficients--permutations-- estimates for factorials--selections--equivalence and order--project: finite topologies--project: cayley's theorem on trees--bell numbers-- generating combinatorial objects--exercises
4. recurrence relations and generating functions 49
fibonacci numbers--aside on formal power series--linear recurrence relations with constant coefficients--derangements and involutions-- catalan and bell numbers--computing solutions to recurrence relations--project: finite fields and quicksort--exercises
5. the principle of inclusion and exclusion 75
pie--a generalisation--stirling numbers--project: stirling numbers and exponentias--even and odd permutations--exercises
6. latin squares and s drs 87
latin squares--systems of distinct representatives--how many latin squares ?--quasigroups--project: quasigroups and groups--orthogonal latin squares--exercises
7. extremal set theory 99
intersecting families--sperner families--the de bruijn-erdos theorem--project: regular families--exercises
8. steiner triple systems 107
steiner systems--a direct construction--a recursive construction--packing and covering--project: some special steiner triple systems-- project: tournaments and kirkman's schoolgirls--exercises
9. finite geometry 123
linear algebra over finite fields--gaussian coefficients--projective geometry axioms for projective geometry--projective planes--other kinds of geometry--project: coordinates and configurations--project: proof of the bruck-ryser theorem--appendix: finite fields--exercises
10. ramsey's theorem 147
the pigeonhole principle--some special cases--ramsey's theorem--bounds for ramsey numbers--applications--the infinite version--exercises
.11. graphs 159
definitions--trees and forests--minimal spanning trees--eulerian graphs--hamiltonian graphs--project: gray codes--the travelling salesman--digraphs--networks--menger, kjnig and hall--diameter and girth--project: moore graphs exercises
12. posets, lattices and matroids .. 187
posers and lattices--linear extensions of a poser--distributive lattices--aside on propositional logic--chains and antichains--products and dimension--the mjbius function of a poset--matroids--project: arrow's theorem--exercises
13. more on partitions and permutations 209
partitions, diagrams and conjugacy classes--euler's pentagonal numbers theorem--project: jacobi's identity--tableaux--symmetric polynomials--exercises
14. automorphism groups and permutation groups 225
three definitions of a group--examples of groups--orbits and transitivity--the schreier-sims algorithm--primitivity and multiple transitivity--examples--project: cayley digraphs and frucht's theorem--exercises
15. enumeration under group action 245
the orbit-counting lemma--an application--cycle index--examples--direct and wreath products--stirling numbers revisited--project: cycle index and symmetric functions--exercises
16. designs 257
definitions and examples--to repeat or not to repeat--fisher's inequality--designs from finite geometry--small designs--project: hadamard matrices--exercises
17. error-correcting codes 271
finding out a liar--definitions--probabilistic considerations--some bounds--linear codes; hamming codes--perfect codes--linear codes and projective spaces--exercises
18. graph colourings 291
more on bipartite graphs--vertex colourings--project: brooks' theorem--perfect graphs--edge colourings--topological graph theory--project: the five-colour theorem--exercises
19. the infinite 307
counting infinite sets konig's infinity lemma--posers and zorn's lemma--ramsey theory--systems of distinct representatives--free constructions--the random graph--exercises
20. where to from here? 325
computational complexity--some graph-theoretic topics--computer software--unsolved problems--further reading
answers to selected exercises 339
bibliography 343
index ... 347
sample problems--how to use this book--what you need to know--exercises
2. on numbers and counting 7
natural numbers and arithmetic--induction--some useful functions--orders of magnitude--different ways of counting--double counting--appendix on set notation--exercises
3. subsets, partitions, permutations 21
subsets--subsets of fixed size--the binomial theorem and pascal's triangle--project: congruences of binomial coefficients--permutations-- estimates for factorials--selections--equivalence and order--project: finite topologies--project: cayley's theorem on trees--bell numbers-- generating combinatorial objects--exercises
4. recurrence relations and generating functions 49
fibonacci numbers--aside on formal power series--linear recurrence relations with constant coefficients--derangements and involutions-- catalan and bell numbers--computing solutions to recurrence relations--project: finite fields and quicksort--exercises
5. the principle of inclusion and exclusion 75
pie--a generalisation--stirling numbers--project: stirling numbers and exponentias--even and odd permutations--exercises
6. latin squares and s drs 87
latin squares--systems of distinct representatives--how many latin squares ?--quasigroups--project: quasigroups and groups--orthogonal latin squares--exercises
7. extremal set theory 99
intersecting families--sperner families--the de bruijn-erdos theorem--project: regular families--exercises
8. steiner triple systems 107
steiner systems--a direct construction--a recursive construction--packing and covering--project: some special steiner triple systems-- project: tournaments and kirkman's schoolgirls--exercises
9. finite geometry 123
linear algebra over finite fields--gaussian coefficients--projective geometry axioms for projective geometry--projective planes--other kinds of geometry--project: coordinates and configurations--project: proof of the bruck-ryser theorem--appendix: finite fields--exercises
10. ramsey's theorem 147
the pigeonhole principle--some special cases--ramsey's theorem--bounds for ramsey numbers--applications--the infinite version--exercises
.11. graphs 159
definitions--trees and forests--minimal spanning trees--eulerian graphs--hamiltonian graphs--project: gray codes--the travelling salesman--digraphs--networks--menger, kjnig and hall--diameter and girth--project: moore graphs exercises
12. posets, lattices and matroids .. 187
posers and lattices--linear extensions of a poser--distributive lattices--aside on propositional logic--chains and antichains--products and dimension--the mjbius function of a poset--matroids--project: arrow's theorem--exercises
13. more on partitions and permutations 209
partitions, diagrams and conjugacy classes--euler's pentagonal numbers theorem--project: jacobi's identity--tableaux--symmetric polynomials--exercises
14. automorphism groups and permutation groups 225
three definitions of a group--examples of groups--orbits and transitivity--the schreier-sims algorithm--primitivity and multiple transitivity--examples--project: cayley digraphs and frucht's theorem--exercises
15. enumeration under group action 245
the orbit-counting lemma--an application--cycle index--examples--direct and wreath products--stirling numbers revisited--project: cycle index and symmetric functions--exercises
16. designs 257
definitions and examples--to repeat or not to repeat--fisher's inequality--designs from finite geometry--small designs--project: hadamard matrices--exercises
17. error-correcting codes 271
finding out a liar--definitions--probabilistic considerations--some bounds--linear codes; hamming codes--perfect codes--linear codes and projective spaces--exercises
18. graph colourings 291
more on bipartite graphs--vertex colourings--project: brooks' theorem--perfect graphs--edge colourings--topological graph theory--project: the five-colour theorem--exercises
19. the infinite 307
counting infinite sets konig's infinity lemma--posers and zorn's lemma--ramsey theory--systems of distinct representatives--free constructions--the random graph--exercises
20. where to from here? 325
computational complexity--some graph-theoretic topics--computer software--unsolved problems--further reading
answers to selected exercises 339
bibliography 343
index ... 347
Combinatorics : topics, techniques, algorithms = 组合数学 : 专题、技术与算法 /
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×