机器视觉.英文版

副标题:无

作   者:(美)杰恩 ...[等]著

分类号:

ISBN:9787111126430

微信扫一扫,移动浏览光盘

简介

   机器视觉(或称计算机视觉)领域的研究博大精深,而且日新月异,对子具体视觉应用系统的设计人员和用户来说,该从何着手呢?本书是机器视觉领域的一本入门教材,详细介绍了基本概念,并辅以必要的数学知识,用较大篇幅来讲解如何在实际应用中实现和使用视觉算法,同时强调了技术的工程层面。本书有意省略了机器视觉中某些没有充分实际应用的理论。    本书可以作为高校相关专业的教材,也适合希望应用机器视觉来解决实际问题的各类人员阅读。    ramesh jain创建了密歇根大学的人工智能实验室,目前是加利福尼亚大学圣迭戈分校(ucsd)电气和计算机工程。计算机科学和工程系的教授。他的研究方向是多媒体信息系统。图像数据库。机器视觉和智能系统。他是《ieee multimedia》杂志的主编,《machine vision and application》。《pattern recognition》和《image and vision computing》杂志编委会成员,还是ieee和aaai的特别会员,acm的会员。    rangachar kasturi 于得克萨斯技术大学获得博士学位之后到宾夕法尼亚州立大学执教。他的主要研究方向是文档图像分析(dia)。他是《ieee transactions on pattern analysis and machineintelligence》杂志的主编。    brian g.schunck于加州大学欧文分校获得学士学位,子麻省理工学院获硕士和博士学位。他目前是密歇根大学安阿伯分校电子工程与计算机科学系副教授,近年来一直从事机器视觉和图像处理系统的开发工作。   

目录

preface

acknowledgments

introduction

1.1 machine vision

1.2 relationships to other fields

1.3 role of knowledge

1.4 image geometry

1.4.1 perspective projection

1.4.2 coordinate systems

1.5 sampling and quantization

1.6 image definitions

1.7 levels of computation

1.7.1 point level

1.7.2 local level

1.7.3 global level

1.7.4 object level

1.8 road map

2 binary image processing

2.1 thresholding

2.2 geometric properties

.2.2.1 size

2.2.2 position

2.2.3 orientation

2.3 projections

2.4 run-length encoding

2.5 binary algorithms

2.5.1 definitions

2.5.2 component labeling

2.5.3 size filter

2.5.4 euler number

2.5.5 region boundary

2.5.6 area and perimeter

2.5.7 compactness

2.5.8 distance measures

2.5.9 distance transforms

2.5.10 medial axis

2.5.11 thinning

2.5.12 expanding and shrinking

2.6 morphological operators

2.7 optical character recognition

3 regions

3.1 regions and edges

3.2 region segmentation

3.2.1 automatic thresholding

3.2.2 limitations of histogram methods

3.3 region representation

3.3.1 array representation

3.3.2 hierarchical representations

3.3.3 region characteristic-based representations

3.3.4 data structures for segmentation

3.4 split and merge

3.4.1 region merging

3.4.2 removing weak edges

3.4.3 region splitting

3.4.4 split and merge

3.5 region growing

4 image filtering

4.1 histogram modification

4.2 linear systems

4.3 linear filters

4.4 median filter

4.5 gaussian smoothing

4.5.1 rotational symmetry

4.5.2 fourier transform property

4.5.3 gaussian separability

4.5.4 cascading gaussians

4.5.5 designing gaussian filters

4.5.6 discrete ganssian filters

5 edge detection

5.1 gradient

5.2 steps in edge detection

5.2.1 roberts operator

5.2.2 sobel operator

5.2.3 prewitt operator

5.2.4 comparison

5.3 second derivative operators

5.3.1 laplacian operator

5.3.2 second directional derivative

5.4 laplacian of gaussian

5.5 image approximation

5.6 gaussian edge detection

5.6.1 canny edge detector

5.7 subpixel location estimation

5.8 edge detector performance

5.8.1 methods for evaluating performance

5.8.2 figure of merit

5.9 sequential methods

5.10 line detection

6 contours

6.1 geometry of curves

6.2 digital curves

6.2.1 chain codes

6.2.2 slope representation

6.2.3 slope density function

6.3 curve fitting

6.4 polyline representation

6.4.1 polyline splitting

6.4.2 segment merging

6.4.3 split and merge

6.4.4 hop-along algorithm

6.5 circular arcs

6.6 conic sections

6.7 spline curves

6.8 curve approximation

6.8.1 total regression

6.8.2 estimating corners

6.8.3 robust regression

6.8.4 hough transform

6.9 fourier descriptors

7 texture

7.1 introduction

7.2 statistical methods of texture analysis

7.3 structural analysis of ordered texture

7.4 model-based methods for texture analysis

7.5 shape from texture

8 optics

8.1 lens equation

8.2 image resolution

8.3 depth of field

8.4 view volume

8.5 exposure

9 shading

9.1 image irradiance

9.1.1 illumination

9.1.2 reflectance

9.2 surface orientation

9.3 the reflectance map

9.3.1 diffuse reflectance

9.4 shape from shading

9.5 photometric stereo

l0 color

10.1 color physics

10.2 color terminology

10.3 color perception

10.4 color processing

10.5 color constancy

10.6 discussion

11 depth

11.1 stereo imaging

11.1.1. cameras in arbitrary position and orientation

11.2 stereo matching

11.2.1 edge matching

11.2.2 region correlation

11.3 shape from x

11.4 range imaging

11.4.1 structured lighting

11.4.2 imaging radar

11.5 active vision

12 calibration

12.1 coordinate systems

12.2 rigid body transformations

12.2.1 rotation matrices

12.2.2 axis of rotation

12.2.3 unit quaternions

12.3 absolute orientation

12.4 relative orientation

12.5 rectification

12.6 depth from binocular stereo

12.7 absolute orientation with scale

12.8 exterior orientation

12.8.1 calibration example

12.9 interior orientation

12.10 camera calibration

12.10.1 simple method for camera calibration

12.10.2 affine method for camera calibration

12.10.3 nonlinear method for camera calibration

12.11 binocular stereo calibration

12.12 active triangulation

12.13 robust methods

12.14 conclusions

13 curves and surfaces

13.1 fields

13.2 geometry of curves

13.3 geometry of surfaces

13.3.1 planes

13.3.2 differential geometry

13.4 curve representations

13.4.1 cubic spline curves

13.5 surface representations

13.5.1 polygonal meshes

13.5.2 surface patches

13.5.3 tensor-product surfaces

13.6 surface interpolation

13.6.1 triangular mesh interpolation

13.6.2 bilinear interpolation

13.6.3 robust interpolation

13.7 surface approximation

13.7.1 regression splines

13.7.2 variational methods

13.7.3 weighted spline approximation

13.8 surface segmentation

13.8.1 initial segmentation

13.8.2 extending surface patches

13.9 surface registration

14 dynamic vision

14.1 change detection

14.1.1 difference pictures

14.1.2 static segmentation and matching

14.2 segmentation using motion

14.2.1 time-varying edge detection

14.2.2 stationary camera

14.3 motion correspondence

14.4 image flow

14.4.1 computing image flow

14.4.2 feature-based methods

14.4.3 gradient-based methods

14.4.4 variational methods for image flow

14.4.5 robust computation of image flow

14.4.6 information in image flow

14.5 segmentation using a moving camera

14.5.1 ego-motion complex log mapping

14.5.2 depth determination

14.6 tracking

14.6.1 deviation function for path coherence

14.6.2 path coherence function

14.6.3 path coherence in the presence of occlusion

14.6.4 modified greedy exchange algorithm

14.7 shape from motion

object recognition

15.1 system components

15.2 complexity of object recognition

15.3 object representation

15.3.1 observer-centered representations

15.3.2 object-centered representations

15.4 feature detection

15.5 recognition strategies

15.5.1 classification

15.5.2 matching

15.5.3 feature indexing

15.6 verification

15.6.1 template matching

15.6.2 morphological approach

15.6.3 symbolic

15.6.4 analogical methods

a mathematical concepts

a.1 analytic geometry

a.2 linear algebra

a.3 variational calculus

a.4 numerical methods

b statistical methods

b.1 measurement errors

b.2 error distributions

b.3 linear regression

b.4 nonlinear regression

c programming techniques

c.1 image descriptors

c.2 mapping operators

c.3 image file formats

bibliography

index


已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

机器视觉.英文版
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon