徐利治数学科学选讲·论无限——无限的数学与哲学

副标题:无

作   者:徐利治

分类号:

ISBN:9787568511339

微信扫一扫,移动浏览光盘

简介


本书为数学家徐利治先生的专著集,该书既谈数学,又谈哲学,当然主要篇幅是讨论数学。这其中有些基本问题,特别是连系统的双相结构问题,曾使作者从年轻时代一直思考到老年,作者希望数学工作者和哲学工作者思想交流与合作将同时推进数学与哲学研究。


目录


上 篇

1 两种对立的无限观/3

1.1 引 言 /3

1.2 自然数的无限性:两种对立的无限观/4

1.3关于两个问题的讨论和解答/6

1.4双相无限观与Hegel命题/9

1.5无限观对数学发展的影响/ll

2无限观与极限论/l3

2.1数列极限的双相无限性/]3

2.2数列极限的两种形态/l5

2.3 Brouwer型实数的存在性问题/l6

2.4 Cantor对角线方法的本质/17

2.5无限观与函数极限概念/18

2.6关于极限可达到情形的讨论/22

3 两种无限性对象的非标准数学模型 /26

3.1 引 言 /26

3.2 略论“无限”概念蕴含的矛盾/27

3.3非标准数域的构造方法/30

3.4非Cantor型自然数序列模型的构造法/39

3.5关于一个引申的Zen0悖论的解释/4z

3.6略论无限的两种形态/43

4 论一种便于应用的非标准分析方法 /48

4.1 引 言 /48

4.2 关于非标准分析方法特点的概述 /48

4.3论’R建模中的一个难点/50

4.4扩张与对应置换及NSA中的第二个难点/52

4.5 怎样使非标准微积分变得容易些/55

4.6非标准微商概念与积分概念/57

4.7广义Duhamel原理/59

4.8微积分定理的非标准证明方法/64

4.9 两种互反公式的一个统一模式/69

4.10略论直觉主义连续统特征的刻画问题/75

5论Cantor连续统与Poincar6连续统/82

5.1 引 言 /s2

5.2 Cantor连续统概念的得与失/82

5.3论密断统L。的意义与作用/86

5.4关于无限分划集的普遍命题及推论/s8

5.5关于构筑Poincar6连续统模型的问题/90

5.6 Poincar6连续统蕴含的命题/96

5.7单子集分划概念的理论意义及应用 /98

5.8本章理论内容的简要总结及哲学分析/99

参考文献/l07

下 篇

关于Cantor超穷数论上几个基本问题的定性分析和

连续统假设的“不可确定性”的研究 /113

论超穷过程论中的两个基本原理与Hegel的消极无限批判 /l49

超穷过程论的基本原理 /159

在“素朴集合论”与“超穷过程论”观点下的

Cantor连续统假设的不可确定性/l70

论G6del不完备性定理/178

谈谈在微积分中引入实无限小量的问题 /l94

Berkeley悖论与点态连续性概念及有关问题/202

编后记 /210


已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

徐利治数学科学选讲·论无限——无限的数学与哲学
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon