p-adic representations, θ-correspondence and the Langlands-Shahidi theory /
副标题:无
作 者:edited by Ye Yangbo & Tian Ye = 局部群表示论, θ对应和Langlands-Shahidi方法 / 叶扬波,田野[编].
分类号:
ISBN:9787030380326
微信扫一扫,移动浏览光盘
简介
This book is the first volume of the Lecture Series of Modern, Number Theory, which is devoted to publishing peer-reviewed workshop lecture notes and the proceedings of conferences on all branches of contemporary number theory research. The series intends to target number theory researchers and students, including both experts and non-experts of the covered subjects.
目录
Preface
1 Arithmetic of Cuspidal Representations
1.1 Cuspidal representations by induction
1.1.1 Background and notation
1.1.2 Intertwining and Hecke algebras
1.1.3 Compact induction
1.1.4 An example
1.1.5 A broader context
1.2 Lattices, orders and strata
1.2.1 Lattices and orders
1.2.2 Lattice chains..
1.2.3 Multiplicative structures
1.2.4 Duality
1.2.5 Strata and intertwining
1.2.6 Field extensions
1.2.7 Minimal elements
1.3 Fundamental strata
1.3.1 Fundamental strata
1.3.2 Application to representations
1.3.3 The characteristic polynomial
1.3.4 Nonsplit fundamental strata
1.4 Prime dimension
1.4.1 A trivial case
1.4.2 The general case
1.4.3 The inducing representation
1.4.4 Uniqueness
1.4.5 Summary
1.5 Simple strata and simple characters
1.5.1 Adjoint map
1.5.2 Critical exponent
1.5.3 Construction
1.5.4 Intertwining.
1.5.5 Definitions
1.5.6 Interwining
1.5.7 Motility... ,
1.6 Structure of cuspidal representations
1.6.1 Trivial simple characters
1.6.2 Occurrence of a simple character
1.6.3 Heisenberg representations
1.6.4 A further restriction
1.6.5 End of the road
1.7 Endo-equivalence and lifting
1.7.1 Transfer of simple characters
1.7.2 Endo-equivalence
1.7.3 Invariants
1.7.4 Tame lifting
1.7.5 Tame induction map for endo-classes
1.8 Relation with the Langlands correspondence
1.8.1 The Weil group'
1.8.2 Representations
1.8.3 The Langlands correspondence
1.8.4 Relation with tame lifting
1.8.5 Ramification Theorem
References
2 Basic Representation Theory of Reductive p-adic Groups
2.1 Smooth representations of locally profinite groups
2.1.1 Locally profinite groups
2.1.2 Basic representation theory
2.1.3 Smooth representations
2.1.4 Induced representations
2.2 Admissible representations of locally profinite groups"
2.2.1 Admissible representations
2.2.2 Haar measure
2.2.3 Hecke algebra of a locally profinite group
2.2.4 Coinvariants
2.3 Schur's Lemma and Z-compact representations
2.3.1 Characters
2.3.2 Schur's Lemma and central character
2.3.3 Z-compact representations
2.3.4 An example
……
3 The Bernstein Decomposition for Smooth Complex Representationsof GLn,(F)
4 Lectures on the Local Theta Correspondence
5 An Overview of the Theory of Eisenstein Series
1 Arithmetic of Cuspidal Representations
1.1 Cuspidal representations by induction
1.1.1 Background and notation
1.1.2 Intertwining and Hecke algebras
1.1.3 Compact induction
1.1.4 An example
1.1.5 A broader context
1.2 Lattices, orders and strata
1.2.1 Lattices and orders
1.2.2 Lattice chains..
1.2.3 Multiplicative structures
1.2.4 Duality
1.2.5 Strata and intertwining
1.2.6 Field extensions
1.2.7 Minimal elements
1.3 Fundamental strata
1.3.1 Fundamental strata
1.3.2 Application to representations
1.3.3 The characteristic polynomial
1.3.4 Nonsplit fundamental strata
1.4 Prime dimension
1.4.1 A trivial case
1.4.2 The general case
1.4.3 The inducing representation
1.4.4 Uniqueness
1.4.5 Summary
1.5 Simple strata and simple characters
1.5.1 Adjoint map
1.5.2 Critical exponent
1.5.3 Construction
1.5.4 Intertwining.
1.5.5 Definitions
1.5.6 Interwining
1.5.7 Motility... ,
1.6 Structure of cuspidal representations
1.6.1 Trivial simple characters
1.6.2 Occurrence of a simple character
1.6.3 Heisenberg representations
1.6.4 A further restriction
1.6.5 End of the road
1.7 Endo-equivalence and lifting
1.7.1 Transfer of simple characters
1.7.2 Endo-equivalence
1.7.3 Invariants
1.7.4 Tame lifting
1.7.5 Tame induction map for endo-classes
1.8 Relation with the Langlands correspondence
1.8.1 The Weil group'
1.8.2 Representations
1.8.3 The Langlands correspondence
1.8.4 Relation with tame lifting
1.8.5 Ramification Theorem
References
2 Basic Representation Theory of Reductive p-adic Groups
2.1 Smooth representations of locally profinite groups
2.1.1 Locally profinite groups
2.1.2 Basic representation theory
2.1.3 Smooth representations
2.1.4 Induced representations
2.2 Admissible representations of locally profinite groups"
2.2.1 Admissible representations
2.2.2 Haar measure
2.2.3 Hecke algebra of a locally profinite group
2.2.4 Coinvariants
2.3 Schur's Lemma and Z-compact representations
2.3.1 Characters
2.3.2 Schur's Lemma and central character
2.3.3 Z-compact representations
2.3.4 An example
……
3 The Bernstein Decomposition for Smooth Complex Representationsof GLn,(F)
4 Lectures on the Local Theta Correspondence
5 An Overview of the Theory of Eisenstein Series
p-adic representations, θ-correspondence and the Langlands-Shahidi theory /
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×