简介
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research
目录
1. Introduction p. 1
1.1. Parameter Perturbations p. 1
1.1.1. An Algebraic Equation p. 2
1.1.2. The van der Pol Oscillator p. 3
1.2. Coordinate Perturbations p. 4
1.2.1. The Bessel Equation of Zeroth Order p. 5
1.2.2. A Simple Example p. 6
1.3. Order Symbols and Gauge Functions p. 7
1.4. Asymptotic Expansions and Sequences p. 9
1.4.1. Asymptotic Series p. 9
1.4.2. Asymptotic Expansions p. 12
1.4.3. Uniqueness of Asymptotic Expansions p. 14
1.5. Convergent versus Asymptotic Series p. 15
1.6. Nonuniform Expansions p. 16
1.7. Elementary Operations on Asymptotic Expansions p. 18
Exercises p. 19
2. Straightforward Expansions and Sources of Nonuniformity p. 23
2.1. Infinite Domains p. 24
2.1.1. The Duffing Equation p. 24
2.1.2. A Model for Weak Nonlinear Instability p. 25
2.1.3. Supersonic Flow Past a Thin Airfoil p. 26
2.1.4. Small Reynolds Number Flow Past a Sphere p. 28
2.2. A Small Parameter Multiplying the Highest Derivative p. 31
2.2.1. A Second-Order Example p. 31
2.2.2. High Reynolds Number Flow Past a Body p. 33
2.2.3. Relaxation Oscillations p. 34
2.2.4. Unsymmetrical Bending of Prestressed Annular Plates p. 35
2.3. Type Change of a Partial Differential Equation p. 37
2.3.1. A Simple Example p. 38
2.3.2. Long Waves on Liquids Flowing down Incline Planes p. 38
2.4. The Presence of Singularities p. 42
2.4.1. Shift in Singularity p. 42
2.4.2. The Earth-Moon-Spaceship Problem p. 43
2.4.3. Thermoelastic Surface Waves p. 45
2.4.4. Turning Point Problems p. 48
2.5. The Role of Coordinate Systems p. 49
Exercises p. 52
3. The Method of Strained Coordinates p. 56
3.1. The Method of Strained Parameters p. 58
3.1.1. The Lindstedt-Poincare Method p. 58
3.1.2. Transition Curves for the Mathieu Equation p. 60
3.1.3. Characteristic Exponents for the Mathieu Equation (Whittaker's Method) p. 62
3.1.4. The Stability of the Triangular Points in the Elliptic Restricted Problem of Three Bodies p. 64
3.1.5. Characteristic Exponents for the Triangular Points in the Elliptic Restricted Problem of Three Bodies p. 66
3.1.6. A Simple Linear Eigenvalue Problem p. 68
3.1.7. A Quasi-Linear Eigenvalue Problem p. 71
3.1.8. The Quasi-Linear Klein-Gordon Equation p. 76
3.2. Lighthill's Technique p. 77
3.2.1. A First-Order Differential Equation p. 79
3.2.2. The One-Dimensional Earth-Moon-Spaceship Problem p. 82
3.2.3. A Solid Cylinder Expanding Uniformly in Still Air p. 83
3.2.4. Supersonic Flow Past a Thin Airfoil p. 86
3.2.5. Expansions by Using Exact Characteristics--Nonlinear Elastic Waves p. 89
3.3. Temple's Technique p. 94
3.4. Renormalization Technique p. 95
3.4.1. The Duffing Equation p. 95
3.4.2. A Model for Weak Nonlinear Instability p. 96
3.4.3. Supersonic Flow Past a Thin Airfoil p. 97
3.4.4. Shift in Singularity p. 98
3.5. Limitations of the Method of Strained Coordinates p. 98
3.5.1. A Model for Weak Nonlinear Instability p. 99
3.5.2. A Small Parameter Multiplying the Highest Derivative p. 100
3.5.3. The Earth-Moon-Spaceship Problem p. 102
Exercises p. 103
4. The Methods of Matched and Composite Asymptotic Expansions p. 110
4.1. The Method of Matched Asymptotic Expansions p. 111
4.1.1. Introduction--Prandtl's Technique p. 111
4.1.2. Higher Approximations and Refined Matching Procedures p. 114
4.1.3. A Second-Order Equation with Variable Coefficients p. 122
4.1.4. Reynolds' Equation for a Slider Bearing p. 125
4.1.5. Unsymmetrical Bending of Prestressed Annular Plates p. 128
4.1.6. Thermoelastic Surface Waves p. 133
4.1.7. The Earth-Moon-Spaceship Problem p. 137
4.1.8. Small Reynolds Number Flow Past a Sphere p. 139
4.2. The Method of Composite Expansions p. 144
4.2.1. A Second-Order Equation with Constant Coefficients p. 145
4.2.2. A Second-Order Equation with Variable Coefficients p. 148
4.2.3. An Initial Value Problem for the Heat Equation p. 150
4.2.4. Limitations of the Method of Composite Expansions p. 153
Exercises p. 154
5. Variation of Parameters and Methods of Averaging p. 159
5.1. Variation of Parameters p. 159
5.1.1. Time-Dependent Solutions of the Schrodinger Equation p. 160
5.1.2. A Nonlinear Stability Example p. 162
5.2. The Method of Averaging p. 164
5.2.1. Van der Pol's Technique p. 164
5.2.2. The Krylov-Bogoliubov Technique p. 165
5.2.3. The Generalized Method of Averaging p. 168
5.3. Struble's Technique p. 171
5.4. The Krylov-Bogoliubov-Mitropolski Technique p. 174
5.4.1. The Duffiing Equation p. 175
5.4.2. The van der Pol Oscillator p. 176
5.4.3. The Klein-Gordon Equation p. 178
5.5. The Method of Averaging by Using Canonical Variables p. 179
5.5.1. The Duffing Equation p. 182
5.5.2. The Mathieu Equation p. 183
5.5.3. A Swinging Spring p. 185
5.6. Von Zeipel's Procedure p. 189
5.6.1. The Duffing Equation p. 192
5.6.2. The Mathieu Equation p. 194
5.7. Averaging by Using the Lie Series and Transforms p. 200
5.7.1. The Lie Series and Transforms p. 201
5.7.2. Generalized Algorithms p. 202
5.7.3. Simplified General Algorithms p. 206
5.7.4. A Procedure Outline p. 208
5.7.5. Algorithms for Canonical Systems p. 212
5.8. Averaging by Using Lagrangians p. 216
5.8.1. A Model for Dispersive Waves p. 217
5.8.2. A Model for Wave-Wave Interaction p. 219
5.8.3. The Nonlinear Klein-Gordon Equation p. 221
Exercises p. 223
6. The Method of Multiple Scales p. 228
6.1. Description of the Method p. 228
6.1.1. Many-Variable Version (The Derivative-Expansion Procedure) p. 236
6.1.2. The Two-Variable Expansion Procedure p. 240
6.1.3. Generalized Method--Nonlinear Scales p. 241
6.2. Applications of the Derivative-Expansion Method p. 243
6.2.1. The Duffing Equation p. 243
6.2.2. The van der Pol Oscillator p. 245
6.2.3. Forced Oscillations of the van der Pol Equation p. 248
6.2.4. Parametric Resonances--The Mathieu Equation p. 253
6.2.5. The van der Pol Oscillator with Delayed Amplitude Limiting p. 257
6.2.6. The Stability of the Triangular Points in the Elliptic Restricted Problem of Three Bodies p. 259
6.2.7. A Swinging Spring p. 262
6.2.8. A Model for Weak Nonlinear Instability p. 264
6.2.9. A Model for Wave-Wave Interaction p. 266
6.2.10. Limitations of the Derivative-Expansion Method p. 269
6.3. The Two-Variable Expansion Procedure p. 270
6.3.1. The Duffing Equation p. 270
6.3.2. The van der Pol Oscillator p. 272
6.3.3. The Stability of the Triangular Points in the Elliptic Restricted Problem of Three Bodies p. 275
6.3.4. Limitations of This Technique p. 275
6.4. Generalized Method p. 276
6.4.1. A Second-Order Equation with Variable Coefficients p. 276
6.4.2. A General Second-Order Equation with Variable Coefficients p. 280
6.4.3. A Linear Oscillator with a Slowly Varying Restoring Force p. 282
6.4.4. An Example with a Turning Point p. 284
6.4.5. The Duffing Equation with Slowly Varying Coefficients p. 286
6.4.6. Reentry Dynamics p. 291
6.4.7. The Earth-Moon-Spaceship Problem p. 295
6.4.8. A Model for Dispersive Waves p. 298
6.4.9. The Nonlinear Klein-Gordon Equation p. 301
6.4.10. Advantages and Limitations of the Generalized Method p. 302
Exercises p. 303
7. Asymptotic Solutions of Linear Equations p. 308
7.1. Second-Order Differential Equations p. 309
7.1.1. Expansions Near an Irregular Singularity p. 309
7.1.2. An Expansion of the Zeroth-Order Bessel Function for Large Argument p. 312
7.1.3. Liouville's Problem p. 314
7.1.4. Higher Approximations for Equations Containing a Large Parameter p. 315
7.1.5. A Small Parameter Multiplying the Highest Derivative p. 317
7.1.6. Homogeneous Problems with Slowly Varying Coefficients p. 318
7.1.7. Reentry Missile Dynamics p. 320
7.1.8. Inhomogeneous Problems with Slowly Varying Coefficients p. 321
7.1.9. Successive Liouville-Green (WKB) Approximations p. 324
7.2. Systems of First-Order Ordinary Equations p. 325
7.2.1. Expansions Near an Irregular Singular Point p. 326
7.2.2. Asymptotic Partitioning of Systems of Equations p. 327
7.2.3. Subnormal Solutions p. 331
7.2.4. Systems Containing a Parameter p. 332
7.2.5. Homogeneous Systems with Slowly Varying Coefficients p. 333
7.3. Turning Point Problems p. 335
7.3.1. The Method of Matched Asymptotic Expansions p. 336
7.3.2. The Langer Transformation p. 339
7.3.3. Problems with Two Turning Points p. 342
7.3.4. Higher-Order Turning Point Problems p. 345
7.3.5. Higher Approximations p. 346
7.3.6. An Inhomogeneous Problem with a Simple Turning Point--First Approximation p. 352
7.3.7. An Inhomogeneous Problem with a Simple Turning Point--Higher Approximations p. 354
7.3.8. An Inhomogeneous Problem with a Second-Order Turning Point p. 356
7.3.9. Turning Point Problems about Singularities p. 358
7.3.10. Turning Point Problems of Higher Order p. 360
7.4. Wave Equations p. 360
7.4.1. The Born or Neumann Expansion and The Feynman Diagrams p. 361
7.4.2. Renormalization Techniques p. 367
7.4.3. Rytov's Method p. 373
7.4.4. A Geometrical Optics Approximation p. 374
7.4.5. A Uniform Expansion at a Caustic p. 377
7.4.6. The Method of Smoothing p. 380
Exercises p. 382
References and Author Index p. 387
Subject Index p. 417
1.1. Parameter Perturbations p. 1
1.1.1. An Algebraic Equation p. 2
1.1.2. The van der Pol Oscillator p. 3
1.2. Coordinate Perturbations p. 4
1.2.1. The Bessel Equation of Zeroth Order p. 5
1.2.2. A Simple Example p. 6
1.3. Order Symbols and Gauge Functions p. 7
1.4. Asymptotic Expansions and Sequences p. 9
1.4.1. Asymptotic Series p. 9
1.4.2. Asymptotic Expansions p. 12
1.4.3. Uniqueness of Asymptotic Expansions p. 14
1.5. Convergent versus Asymptotic Series p. 15
1.6. Nonuniform Expansions p. 16
1.7. Elementary Operations on Asymptotic Expansions p. 18
Exercises p. 19
2. Straightforward Expansions and Sources of Nonuniformity p. 23
2.1. Infinite Domains p. 24
2.1.1. The Duffing Equation p. 24
2.1.2. A Model for Weak Nonlinear Instability p. 25
2.1.3. Supersonic Flow Past a Thin Airfoil p. 26
2.1.4. Small Reynolds Number Flow Past a Sphere p. 28
2.2. A Small Parameter Multiplying the Highest Derivative p. 31
2.2.1. A Second-Order Example p. 31
2.2.2. High Reynolds Number Flow Past a Body p. 33
2.2.3. Relaxation Oscillations p. 34
2.2.4. Unsymmetrical Bending of Prestressed Annular Plates p. 35
2.3. Type Change of a Partial Differential Equation p. 37
2.3.1. A Simple Example p. 38
2.3.2. Long Waves on Liquids Flowing down Incline Planes p. 38
2.4. The Presence of Singularities p. 42
2.4.1. Shift in Singularity p. 42
2.4.2. The Earth-Moon-Spaceship Problem p. 43
2.4.3. Thermoelastic Surface Waves p. 45
2.4.4. Turning Point Problems p. 48
2.5. The Role of Coordinate Systems p. 49
Exercises p. 52
3. The Method of Strained Coordinates p. 56
3.1. The Method of Strained Parameters p. 58
3.1.1. The Lindstedt-Poincare Method p. 58
3.1.2. Transition Curves for the Mathieu Equation p. 60
3.1.3. Characteristic Exponents for the Mathieu Equation (Whittaker's Method) p. 62
3.1.4. The Stability of the Triangular Points in the Elliptic Restricted Problem of Three Bodies p. 64
3.1.5. Characteristic Exponents for the Triangular Points in the Elliptic Restricted Problem of Three Bodies p. 66
3.1.6. A Simple Linear Eigenvalue Problem p. 68
3.1.7. A Quasi-Linear Eigenvalue Problem p. 71
3.1.8. The Quasi-Linear Klein-Gordon Equation p. 76
3.2. Lighthill's Technique p. 77
3.2.1. A First-Order Differential Equation p. 79
3.2.2. The One-Dimensional Earth-Moon-Spaceship Problem p. 82
3.2.3. A Solid Cylinder Expanding Uniformly in Still Air p. 83
3.2.4. Supersonic Flow Past a Thin Airfoil p. 86
3.2.5. Expansions by Using Exact Characteristics--Nonlinear Elastic Waves p. 89
3.3. Temple's Technique p. 94
3.4. Renormalization Technique p. 95
3.4.1. The Duffing Equation p. 95
3.4.2. A Model for Weak Nonlinear Instability p. 96
3.4.3. Supersonic Flow Past a Thin Airfoil p. 97
3.4.4. Shift in Singularity p. 98
3.5. Limitations of the Method of Strained Coordinates p. 98
3.5.1. A Model for Weak Nonlinear Instability p. 99
3.5.2. A Small Parameter Multiplying the Highest Derivative p. 100
3.5.3. The Earth-Moon-Spaceship Problem p. 102
Exercises p. 103
4. The Methods of Matched and Composite Asymptotic Expansions p. 110
4.1. The Method of Matched Asymptotic Expansions p. 111
4.1.1. Introduction--Prandtl's Technique p. 111
4.1.2. Higher Approximations and Refined Matching Procedures p. 114
4.1.3. A Second-Order Equation with Variable Coefficients p. 122
4.1.4. Reynolds' Equation for a Slider Bearing p. 125
4.1.5. Unsymmetrical Bending of Prestressed Annular Plates p. 128
4.1.6. Thermoelastic Surface Waves p. 133
4.1.7. The Earth-Moon-Spaceship Problem p. 137
4.1.8. Small Reynolds Number Flow Past a Sphere p. 139
4.2. The Method of Composite Expansions p. 144
4.2.1. A Second-Order Equation with Constant Coefficients p. 145
4.2.2. A Second-Order Equation with Variable Coefficients p. 148
4.2.3. An Initial Value Problem for the Heat Equation p. 150
4.2.4. Limitations of the Method of Composite Expansions p. 153
Exercises p. 154
5. Variation of Parameters and Methods of Averaging p. 159
5.1. Variation of Parameters p. 159
5.1.1. Time-Dependent Solutions of the Schrodinger Equation p. 160
5.1.2. A Nonlinear Stability Example p. 162
5.2. The Method of Averaging p. 164
5.2.1. Van der Pol's Technique p. 164
5.2.2. The Krylov-Bogoliubov Technique p. 165
5.2.3. The Generalized Method of Averaging p. 168
5.3. Struble's Technique p. 171
5.4. The Krylov-Bogoliubov-Mitropolski Technique p. 174
5.4.1. The Duffiing Equation p. 175
5.4.2. The van der Pol Oscillator p. 176
5.4.3. The Klein-Gordon Equation p. 178
5.5. The Method of Averaging by Using Canonical Variables p. 179
5.5.1. The Duffing Equation p. 182
5.5.2. The Mathieu Equation p. 183
5.5.3. A Swinging Spring p. 185
5.6. Von Zeipel's Procedure p. 189
5.6.1. The Duffing Equation p. 192
5.6.2. The Mathieu Equation p. 194
5.7. Averaging by Using the Lie Series and Transforms p. 200
5.7.1. The Lie Series and Transforms p. 201
5.7.2. Generalized Algorithms p. 202
5.7.3. Simplified General Algorithms p. 206
5.7.4. A Procedure Outline p. 208
5.7.5. Algorithms for Canonical Systems p. 212
5.8. Averaging by Using Lagrangians p. 216
5.8.1. A Model for Dispersive Waves p. 217
5.8.2. A Model for Wave-Wave Interaction p. 219
5.8.3. The Nonlinear Klein-Gordon Equation p. 221
Exercises p. 223
6. The Method of Multiple Scales p. 228
6.1. Description of the Method p. 228
6.1.1. Many-Variable Version (The Derivative-Expansion Procedure) p. 236
6.1.2. The Two-Variable Expansion Procedure p. 240
6.1.3. Generalized Method--Nonlinear Scales p. 241
6.2. Applications of the Derivative-Expansion Method p. 243
6.2.1. The Duffing Equation p. 243
6.2.2. The van der Pol Oscillator p. 245
6.2.3. Forced Oscillations of the van der Pol Equation p. 248
6.2.4. Parametric Resonances--The Mathieu Equation p. 253
6.2.5. The van der Pol Oscillator with Delayed Amplitude Limiting p. 257
6.2.6. The Stability of the Triangular Points in the Elliptic Restricted Problem of Three Bodies p. 259
6.2.7. A Swinging Spring p. 262
6.2.8. A Model for Weak Nonlinear Instability p. 264
6.2.9. A Model for Wave-Wave Interaction p. 266
6.2.10. Limitations of the Derivative-Expansion Method p. 269
6.3. The Two-Variable Expansion Procedure p. 270
6.3.1. The Duffing Equation p. 270
6.3.2. The van der Pol Oscillator p. 272
6.3.3. The Stability of the Triangular Points in the Elliptic Restricted Problem of Three Bodies p. 275
6.3.4. Limitations of This Technique p. 275
6.4. Generalized Method p. 276
6.4.1. A Second-Order Equation with Variable Coefficients p. 276
6.4.2. A General Second-Order Equation with Variable Coefficients p. 280
6.4.3. A Linear Oscillator with a Slowly Varying Restoring Force p. 282
6.4.4. An Example with a Turning Point p. 284
6.4.5. The Duffing Equation with Slowly Varying Coefficients p. 286
6.4.6. Reentry Dynamics p. 291
6.4.7. The Earth-Moon-Spaceship Problem p. 295
6.4.8. A Model for Dispersive Waves p. 298
6.4.9. The Nonlinear Klein-Gordon Equation p. 301
6.4.10. Advantages and Limitations of the Generalized Method p. 302
Exercises p. 303
7. Asymptotic Solutions of Linear Equations p. 308
7.1. Second-Order Differential Equations p. 309
7.1.1. Expansions Near an Irregular Singularity p. 309
7.1.2. An Expansion of the Zeroth-Order Bessel Function for Large Argument p. 312
7.1.3. Liouville's Problem p. 314
7.1.4. Higher Approximations for Equations Containing a Large Parameter p. 315
7.1.5. A Small Parameter Multiplying the Highest Derivative p. 317
7.1.6. Homogeneous Problems with Slowly Varying Coefficients p. 318
7.1.7. Reentry Missile Dynamics p. 320
7.1.8. Inhomogeneous Problems with Slowly Varying Coefficients p. 321
7.1.9. Successive Liouville-Green (WKB) Approximations p. 324
7.2. Systems of First-Order Ordinary Equations p. 325
7.2.1. Expansions Near an Irregular Singular Point p. 326
7.2.2. Asymptotic Partitioning of Systems of Equations p. 327
7.2.3. Subnormal Solutions p. 331
7.2.4. Systems Containing a Parameter p. 332
7.2.5. Homogeneous Systems with Slowly Varying Coefficients p. 333
7.3. Turning Point Problems p. 335
7.3.1. The Method of Matched Asymptotic Expansions p. 336
7.3.2. The Langer Transformation p. 339
7.3.3. Problems with Two Turning Points p. 342
7.3.4. Higher-Order Turning Point Problems p. 345
7.3.5. Higher Approximations p. 346
7.3.6. An Inhomogeneous Problem with a Simple Turning Point--First Approximation p. 352
7.3.7. An Inhomogeneous Problem with a Simple Turning Point--Higher Approximations p. 354
7.3.8. An Inhomogeneous Problem with a Second-Order Turning Point p. 356
7.3.9. Turning Point Problems about Singularities p. 358
7.3.10. Turning Point Problems of Higher Order p. 360
7.4. Wave Equations p. 360
7.4.1. The Born or Neumann Expansion and The Feynman Diagrams p. 361
7.4.2. Renormalization Techniques p. 367
7.4.3. Rytov's Method p. 373
7.4.4. A Geometrical Optics Approximation p. 374
7.4.5. A Uniform Expansion at a Caustic p. 377
7.4.6. The Method of Smoothing p. 380
Exercises p. 382
References and Author Index p. 387
Subject Index p. 417
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×