副标题:无

作   者:

分类号:

ISBN:9780123743534

微信扫一扫,移动浏览光盘

简介

  This book is the definitive guide to the techniques and applications of position location, covering both terrestrial and satellite systems. It gives all the techniques, theoretical models, and algorithms that engineers need to improve their current location schemes and to develop future location algorithms and systems. Comprehensive coverage is given to system design trade-offs, complexity issues, and the design of efficient positioning algorithms to enable the creation of high-performance location positioning systems. Traditional methods are also reexamined in the context of the challenges posed by reconfigurable and multihop networks. Applications discussed include wireless networks (WiFi, ZigBee, UMTS, and DVB networks), cognitive radio, sensor networks and multihop networks. Features Contains a complete guide to models, techniques, and applications of position location Includes applications to wireless networks, demonstrating the relevance of location positioning to these "hot" areas in research and development Covers system design trade-offs and the design of efficient positioning algorithms, enabling the creation of future location positioning systems Provides a theoretical underpinning for understanding current position location algorithms, giving researchers a foundation to develop future algorithms David Mu?oz is Director and César Vargas is a member of the Center for Electronics and Telecommunications, Tecnológico de Monterrey, Mexico. Frantz Bouchereau is a senior communications software developer at The MathWorks Inc. in Natick, MA. Rogerio Enríquez-Caldera is at Instituto Nacional de Atrofisica, Optica y Electronica (INAOE), Puebla, Mexico.      . Contains a complete guide to models, techniques and applications of position location   . Includes applications to wireless networks (WiFi, ZigBee, DVB networks), cognitive radio, sensor networks and reconfigurable and multi-hop networks, demonstrating the relevance of location positioning to these 'hot' areas in research and development   . Covers system design trade-offs, and the design of efficient positioning algorithms enables the creation of future location positioning systems   . Provides a theoretical underpinning for understanding current position location algorithms, giving researchers a foundation to develop future algorithms  

目录

Contents 6
Preface 12
Acknowledgments 16
About the Authors 18
Chapter 1. The Position Location Problem 22
1.1 The Need for PL and Historical Developments 23
1.2 PL Requirements and Limitations 26
1.2.1 Resolution 26
1.2.2 Fundamental Scenarios for PL 31
1.3 Terrestrial and Satellite Scenarios 35
1.3.1 Mobility 37
1.4 Current and Potential Applications 38
References 42
Chapter 2. Signal Parameter Estimation for the Localization Problem 44
2.1 AOA Measurements 44
2.1.1 The Uniform Linear Array Model 45
2.1.2 Cramer Rao Bound for Array Observations 48
2.2 Nonparametric Methods for AOA Estimation 49
2.2.1 Beamscan AOA Estimator 49
2.2.2 MVDR AOA Estimator 50
2.3 Parametric Methods for AOA Estimation 50
2.3.1 Maximum Likelihood AOA Estimator 50
2.3.2 MUSIC Algorithm for AOA Estimation 52
2.3.3 ESPRIT Algorithm for AOA Estimation 54
2.4 TOA and TDOA Measurements 56
2.4.1 The Time of Arrival Problem 57
2.4.2 The Time Difference of Arrival Problem 58
2.4.3 Performance Bound for TOA and TDOA Problems 59
2.4.4 Received Signal Model and Its Analogy to the Array Processing Problem 60
2.4.5 Generalized Cross-Correlation Method for TOA or TDOA Estimation 61
2.4.6 Conventional PN-Correlation Method 65
2.4.7 A Super-Resolution PN-Correlation Method: The SPM Algorithm 67
2.4.8 TOA Estimation by Successive Cancellation 75
2.5 Range Estimation Based on Received Signal Strength 77
2.6 Received Signal Strength Measurements 78
2.6.1 Log-Normal Propagation Model 80
2.6.2 ML Estimation of Log-Normal Parameters 81
2.6.3 Log-Normal Range Estimator 81
References 83
Chapter 3. Location Information Processing 88
3.1 The Multilateration Problem 89
3.2 Geometric Multilateration 90
3.2.1 Geometric Multilateration Based on TOA Measurements 92
3.2.2 Geometric Multilateration Based on AOA Measurements 95
3.2.3 Geometric Multilateration Based on TDOA Measurements 96
3.3 Statistical Multilateration 98
3.3.1 Least-Squares Multilateration 99
3.3.2 LS Multilateration with Uncertain Reference Node Positions 101
3.3.3 Hybrid Location Estimation Systems 103
3.4 Location Estimation in Multihop Scenarios 103
3.4.1 Centroid Algorithm 107
3.4.2 Approximate Point-in-Triangulation Algorithm 108
3.4.3 Ad Hoc Positioning System Algorithms 111
3.4.4 Dead-Reckoning 115
3.5 Performance Assessment of Location Estimation Systems 119
3.5.1 Cramer-Rao Bound 120
3.5.2 Circular Error Probability 120
3.5.3 Geometric Dilution of Precision 121
References 121
Chapter 4. Heuristic Approaches to the Position Location Problem 124
4.1 Single-Hop and Relational Scenarios 124
4.1.1 Range-Free Location Estimation Systems 126
4.2 Multihop Scenarios 130
4.2.1 Triangle Concatenation 130
4.2.2 Random Flight 132
4.2.3 Manhattanized Algorithms 140
4.2.4 Relational and Fuzzy Approach 154
4.3 Conclusions 171
References 172
Chapter 5. Terrestrial-Based Location Systems 174
5.1 From Cellular to Reconfigurable Networks 174
5.1.1 Cellular Network Scenario 176
5.1.2 2G and 3G Technology Review 178
5.1.3 4G and Beyond 186
5.1.4 Ad Hoc and Sensor Network Scenarios 187
5.2 Mobility in Wireless Networks 196
5.2.1 Capacity and Coverage Issues 196
5.2.2 Modeling Mobility 200
5.2.3 Dealing with Mobility 205
5.2.4 Mobility and Location-Based Services 207
5.2.5 Mobility and Location 208
5.3 Toward the CR Paradigm for Position Location 210
5.3.1 The Concept of Cognitive Radio 210
5.3.2 Multiple Antenna Systems 212
5.3.3 Basics of Cross-Layering for Reconfigurable Networks 218
5.3.4 Cooperative and Collaborative Wireless Networks 219
5.3.5 Fundamentals of Space\u2013Time Processing 221
References 222
Chapter 6. Applications of Terrestrial-Based Location Systems 228
6.1 Cellular Systems 228
6.1.1 2G and 3G Systems 229
6.1.2 Multihop Cellular 232
6.1.3 Cell-ID 233
6.1.4 E911 233
6.2 Local (Indoor) Network Scenario 234
6.2.1 Technologies and Standards Review 235
6.2.2 Localization with WiFi, Bluetooth, and ZigBee 236
6.2.3 RFID and INS 239
6.2.4 System Comparison 240
6.2.5 System Trade-offs 241
6.3 Mesh Systems 241
6.3.1 Sensor Networks 242
6.3.2 Ad Hoc Networks 245
6.3.3 Natural and Human-Made Disasters 247
References 248
Chapter 7. Satellite-Based Location Systems 252
7.1 Satellite Positioning 253
7.1.1 Absolute and Relative Positioning 254
7.1.2 Kinematic and Static Positioning 257
7.2 Structure of a Satellite-Positioning System 260
7.2.1 Constellation Segment 261
7.2.2 Control Segment 266
7.2.3 User Segment 268
7.3 Fundamental Concepts 268
7.3.1 Ranging and Timing 269
7.3.2 Precision and Accuracy 271
7.3.3 Civil and Security Considerations 273
7.3.4 Coordinate Systems 273
7.4 Sources of Errors 273
7.4.1 Stochastic 274
7.4.2 Systematic 274
7.5 Applications 276
7.6 Trends and Comparisons 277
7.6.1 GPS, GLONASS, and GALILEO 277
7.6.2 Developments in Perspective 279
7.6.3 Integration of Satellite and Ground-Based Location Systems 280
References 281
List of Acronyms 282
Index 286

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon