简介
目录
1. Introduction
2. Propositional logic
3. Probability calculus
4. Bayesian networks
5. Building Bayesian networks
6. Inference by variable elimination
7. Inference by factor elimination
8. Inference by conditioning
9. Models for graph decomposition
10. Most likely instantiations
11. The complexity of probabilistic inference
12. Compiling Bayesian networks
13. Inference with local structure
14. Approximate inference by belief propagation
15. Approximate inference by stochastic sampling
16. Sensitivity analysis
17. Learning: the maximum likelihood approach
18. Learning: the Bayesian approach
Appendix A: notation
Appendix B: concepts from information theory
Appendix C: fixed point iterative methods
Appendix D: constrained optimization
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问