副标题:无

作   者:

分类号:

ISBN:9780821835319

微信扫一扫,移动浏览光盘

简介

Farber examines the geometrical, topological, and dynamical properties of closed one-forms, highlighting the relations between their global and local features. He describes the Novikov numbers and inequalities, the universal complex and its construction, Bott-type inequalities and those with Von Neumann Betti numbers, equivariant theory, the exactness of Novikov inequalities, the Morse theory of harmonic forms, and Lusternick-Schnirelman theory. Annotation 漏2004 Book News, Inc., Portland, OR (booknews.com)

目录

Preface p. vii
Chapter 1. The Novikov Numbers p. 1
1.1. Homological algebra of Morse inequalities p. 1
1.2. The Novikov ring Nov([Gamma]) p. 6
1.3. The rational subring R([Gamma]) p. 9
1.4. Homology of local coefficient systems p. 12
1.5. The Novikov numbers p. 17
1.6. Further properties of the Novikov numbers p. 21
1.7. Novikov numbers and Betti numbers of flat line bundles p. 30
Chapter 2. The Novikov Inequalities p. 35
2.1. Closed 1-forms p. 35
2.2. Geometry of Novikov theory p. 38
2.3. The Novikov inequalities p. 45
Chapter 3. The Universal Complex p. 49
3.1. The Main Theorem p. 49
3.2. Line bundles and algebraic integers p. 54
3.3. Generic flat vector bundles p. 56
3.4. Examples p. 58
Chapter 4. Construction of the Universal Complex p. 61
4.1. Chain collapse p. 61
4.2. Proof of Theorem 3.1 in the rank 1 case p. 63
4.3. Proof of Theorem 3.1 in the general case p. 66
4.4. Refined universal complex and deformation complex p. 75
Chapter 5. Bott-type Inequalities p. 81
5.1. Topology of the set of zeros p. 81
5.2. Proofs of Theorems 5.1 and 5.5 p. 86
Chapter 6. Inequalities with Von Neumann Betti Numbers p. 91
Chapter 7. Equivariant Theory p. 99
7.1. Basic 1-forms p. 100
7.2. Equivariant Novikov inequalities p. 101
7.3. Application: Fixed points of a symplectic circle action p. 104
7.4. Signature via Novikov numbers p. 108
Chapter 8. Exactness of the Novikov Inequalities p. 113
8.1. Exactness Theorem p. 113
8.2. Finiteness theorem for codimension two knots p. 114
8.3. Surgery on codimension one submanifolds p. 115
8.4. Algebra of minimal lattices p. 119
8.5. Proof of The Exactness Theorem p. 122
Chapter 9. Morse Theory of Harmonic Forms p. 125
9.1. Topology of singular foliations of closed 1-forms p. 125
9.2. Intrinsically harmonic 1-forms p. 131
9.3. Examples of singular foliations p. 137
9.4. Proof of Calabi's Theorem p. 140
9.5. Morse numbers of harmonic 1-forms p. 147
Chapter 10. Lusternik-Schnirelman Theory, Closed 1-Forms, and Dynamics p. 159
10.1. Colliding the critical points p. 160
10.2. Closed 1-forms on topological spaces p. 162
10.3. Category of a space with respect to a cohomology class p. 165
10.4. Estimate of the number of zeros p. 170
10.5. Gradient-convex neighborhoods p. 177
10.6. Movable homology classes p. 179
10.7. Cohomological lower bound for cat(X, [xi]) p. 181
10.8. Deformations and their spectral sequences p. 184
10.9. Families of flat bundles and higher Massey products p. 190
10.10. Estimate for cat(X, [xi]) in terms of [xi]-survivors p. 194
10.11. Flows, Lyapunov 1-forms and asymptotic cycles p. 197
Appendix A. Manifolds with Corners p. 205
Appendix B. Morse-Bott Functions on Manifolds with Corners p. 213
Appendix C. Morse-Bott Inequalities p. 227
Appendix D. Relative Morse Theory p. 233
Bibliography p. 239
Index p. 245

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon