Domain decomposition methods : algorithms and theory = 区域分解算法 : 算法与理论 /
副标题:无
分类号:O241.82
ISBN:9787030166906
微信扫一扫,移动浏览光盘
简介
《区域分解算法:算法与理论(影印版)》的目的是全面讲述偏微分方程中的各种最成功、最通用的区域分解方法,有限元逼近和谱元素逼近预条件算子,内容上做到自包含,而主要侧重点在于算法和数学方面。《区域分解算法:算法与理论(影印版)》详细阐述的一些重要的方法如FETI、平衡Neumann-Neumann方法、谱元素方法等,都是第一次在数学专著中出现。
目录
introduction.
1.1basicideasofdomaindecomposition
1.2matrixandvectorrepresentations
1.3nonoverlappingmethods
1.3.1anequationforur:theschurcomplementsystem
1.3.2anequationfortheflux
1.3.3thedirichlet-neumannalgorithm
1.3.4theneumann-neumannalgorithm
1.3.5adirichlet-dirichletalgorithmorafetimethod
1.3.6thecaseofmanysubdomains
1.4theschwarzalternatingmethod
1.4.1descriptionofthemethod
1.4.2theschwarzalternatingmethodasarichardsonmethod
1.5blockjacobipreconditioners
1.6someresultsonschwarzalternatingmethods
1.6.1analysisforthecaseoftwosubdomains
1.6.2thecaseofmorethantwosubdomainsabstracttheoryofschwarzmethods
2.1introduction
2.2schwarzmethods
2.3convergencetheory
.2.4historicalremarks
2.5additionalresults
2.5.1coloringtechniques
2.5.2.ahybridmethod
2.5.3comparisonresults
2.6remarksontheimplementation
3two-leveloverlappingmethods
3.1introduction
3.2localsolvers
3.3acoarseproblem
3.4scalingandquotientspacearguments
3.5technicaltools
3.6convergenceresults
3.7remarksontheimplementation
3.8numericalresults
3.9restrictedschwarzalgorithms
3.10alternativecoarseproblems
3.10.1convergenceresults
3.10.2smoothedaggregationtechniques
3.10.3partitionofunitycoarsespaces
4substructuringmethods:introduction
4.1introduction
4.2problemsettingandgeometry
4.3schurcomplementsystems
4.4,discreteharmonicextensions
4.5conditionnumberoftheschurcomplement
4.6technicaltools
4.6.1interpolationintocoarsespaces
4.6.2inequalitiesforedges
4.6.3inequalitiesforfaces
4.6.4inequalitiesforverticesandauxiliaryresults
5primaliterativesubstructuringmethods
5.1introduction.
5.2localdesignandanalysis
5.3localsolvers
5.4coarsespacesandconditionnumberestimates
5.4.1vertexbasedmethods
5.4.2wirebasketbasedalgorithms
5.4.3facebasedalgorithms
6neumann-neumannandfetimethods
6.1introduction
6.2balancingneumann-neumannmethods
6.2.1definitionofthealgorithm
6.2.2matrixformofthealgorithm
6.2.3conditionnumberbounds
6.3one-levelfetimethods
6.3.1areviewoftheone-levelfetimethods
6.3.2thecaseofnonredundantlagrangemultipliers
6.3.3thecaseofredundantlagrangemultipliers
6.4dual-primalfetimethods
6.4.1feti-dpmethodsintwodimensions
6.4.2afamilyoffeti-dpalgorithmsinthreedimensions
6.4.3analysisofthreefeti-dpalgorithms
6.4.4implementationoffeti-dpmethods
6.4.5computationalresults
spectralelementmethods
7.1introduction..
7.2deville-mundpreconditioners
7.3two-leveloverlappingschwarzmethods
7.4iterativesubstructuringmethods
7.4.1technicaltools
7.4.2algorithmsandconditionnumberbounds
7.5remarksonpandhpapproximations
7.5.1moregeneralpapproximations
7.5.2extensionstohpapproximations
linearelasticity
8.1introduction..
8.2atwo-leveloverlappingmethod
8.3iterativesubstructuringmethods
8.4awirebasketbasedmethod
8.4.1anextensionfromtheinterface
8.4.2anextensionfromthewirebasket
8.4.3awirebasketpreconditionerforlinearelasticity
8.5neumann-neumannandfetimethods
8.5.1aneumann-neumannalgorithmforlinearelasticity
8.5.2one-levelfetialgorithmsforlinearelasticity
8.5.3feti-dpalgorithmsforlinearelasticity
9preconditionersforsaddlepointproblems
9.1introduction
9.2blockpreconditioners
9.3flowsinporousmedia
9.3.1iterativesubstructuringmethods
9.3.2hybrid-mixedformulationsandspectral
equivalencieswithcrouzeix-raviartapproximations
9.3.3abalancingneumann-neumannmethod
9.3.4overlappingmethods
9.4thestokesproblemandalmostincompressibleelasticity.
9.4.1blockpreconditioners
9.4.2iterativesubstructuringmethods
9.4.3computationalresults
10problemsinh(dlv;)andh(curl;)
10.1overlappingmethods
10.1.1problemsinh(curl;)
10.1.2problemsinh(div;d)
10.1.3finalremarksonoverlappingmethodsand
numericalresults
10.2iterativesubstructuringmethods
10.2.1technicaltools
10.2.2aface-basedmethod
10.2.3aneumann-neumannmethod
10.2.4remarksontwo-dimensionalproblemsand
numericalresults
10.2.5iterativesubstructuringfornede1ecapproximation
inthreedimensions
11indefiniteandnonsymmetricproblems
11.1introduction
11.2algorithmsonoverlappingsubregions
11.3aniterativesubstructuringmethod
11.4numericalresults
11.4.1anonsymmetricproblem
11.4.2thehelmholtzequation
11.4.3avariable-coefficient,nonsymmetricindefiniteproblem
11.5additionaltopics
11.5.1convection-diffusionproblems
11.5.2thehelmholtzequation
11.5.3optimizedinterfaceconditions
11.5.4nonlinearandeigenvalueproblemsaellipticproblemsandsobolevspaces
a.1sobolevspaces
a.2tracespaces
a.3linearoperators
a.4poincareandfriedrichstypeinequalities
a.5spacesofvector-valuedfunctions
a.5.1thespaceh(div)
a.5.2thespaceh(curl;)intwodimensions
a.5.3thespaceh(curl;)inthreedimensions
a.5.4thekernelandrangeofthecurlanddivergenceoperators
a.6positivedefiniteproblems
a.6.1scalarproblems
a.6.2linearelasticity
a.6.3problemsinh(div;d)andh(curl;g)
a.7non-symmetricandindefiniteproblems
a.7.1generalizationsofthelax-milgramlemma
a.7.2saddle-pointproblems
a.8regularityresultsbgalerkinapproximations
b.1finiteelementapproximations
b.i.1triangulations
b.l.2finiteelementspaces
b.1.3symmetric,positivedefiniteproblems
b.l.4non-symmetricandindefiniteproblems
b.2spectralelementapproximations
b.3divergenceandcurlconformingfiniteelements
b.3.1raviart-thomaselements
b.3.2nedelecelementsintwodimensions
b.3.3nedelecelementsinthreedimensions
b.3.4thekernelandrangeofthecurlanddivergenceoperators
b.4saddle-pointproblems
b.4.1finiteelementapproximationsforthestokesproblem
b.4.2spectralelementapproximationsforthestokesproblem
b.4.3finiteelementapproximationsforflowsinporousmedia
b.5inverseinequalities.
b.6matrixrepresentationandconditionnumbercsolutionofalgebraiclinearsystems
c.1eigenvaluesandconditionnumber
c.2directmethods
c.2.1factorizations
c.2.2fill-in
c.3richardsonmethod
c.4steepestdescent
c.5conjugategradientmethod
c.6methodsfornon-symmetricandindefinitesystems
c.6.1thegeneralizedminimalresidualmethod
c.6.2theconjugateresidualmethod
references
index...
1.1basicideasofdomaindecomposition
1.2matrixandvectorrepresentations
1.3nonoverlappingmethods
1.3.1anequationforur:theschurcomplementsystem
1.3.2anequationfortheflux
1.3.3thedirichlet-neumannalgorithm
1.3.4theneumann-neumannalgorithm
1.3.5adirichlet-dirichletalgorithmorafetimethod
1.3.6thecaseofmanysubdomains
1.4theschwarzalternatingmethod
1.4.1descriptionofthemethod
1.4.2theschwarzalternatingmethodasarichardsonmethod
1.5blockjacobipreconditioners
1.6someresultsonschwarzalternatingmethods
1.6.1analysisforthecaseoftwosubdomains
1.6.2thecaseofmorethantwosubdomainsabstracttheoryofschwarzmethods
2.1introduction
2.2schwarzmethods
2.3convergencetheory
.2.4historicalremarks
2.5additionalresults
2.5.1coloringtechniques
2.5.2.ahybridmethod
2.5.3comparisonresults
2.6remarksontheimplementation
3two-leveloverlappingmethods
3.1introduction
3.2localsolvers
3.3acoarseproblem
3.4scalingandquotientspacearguments
3.5technicaltools
3.6convergenceresults
3.7remarksontheimplementation
3.8numericalresults
3.9restrictedschwarzalgorithms
3.10alternativecoarseproblems
3.10.1convergenceresults
3.10.2smoothedaggregationtechniques
3.10.3partitionofunitycoarsespaces
4substructuringmethods:introduction
4.1introduction
4.2problemsettingandgeometry
4.3schurcomplementsystems
4.4,discreteharmonicextensions
4.5conditionnumberoftheschurcomplement
4.6technicaltools
4.6.1interpolationintocoarsespaces
4.6.2inequalitiesforedges
4.6.3inequalitiesforfaces
4.6.4inequalitiesforverticesandauxiliaryresults
5primaliterativesubstructuringmethods
5.1introduction.
5.2localdesignandanalysis
5.3localsolvers
5.4coarsespacesandconditionnumberestimates
5.4.1vertexbasedmethods
5.4.2wirebasketbasedalgorithms
5.4.3facebasedalgorithms
6neumann-neumannandfetimethods
6.1introduction
6.2balancingneumann-neumannmethods
6.2.1definitionofthealgorithm
6.2.2matrixformofthealgorithm
6.2.3conditionnumberbounds
6.3one-levelfetimethods
6.3.1areviewoftheone-levelfetimethods
6.3.2thecaseofnonredundantlagrangemultipliers
6.3.3thecaseofredundantlagrangemultipliers
6.4dual-primalfetimethods
6.4.1feti-dpmethodsintwodimensions
6.4.2afamilyoffeti-dpalgorithmsinthreedimensions
6.4.3analysisofthreefeti-dpalgorithms
6.4.4implementationoffeti-dpmethods
6.4.5computationalresults
spectralelementmethods
7.1introduction..
7.2deville-mundpreconditioners
7.3two-leveloverlappingschwarzmethods
7.4iterativesubstructuringmethods
7.4.1technicaltools
7.4.2algorithmsandconditionnumberbounds
7.5remarksonpandhpapproximations
7.5.1moregeneralpapproximations
7.5.2extensionstohpapproximations
linearelasticity
8.1introduction..
8.2atwo-leveloverlappingmethod
8.3iterativesubstructuringmethods
8.4awirebasketbasedmethod
8.4.1anextensionfromtheinterface
8.4.2anextensionfromthewirebasket
8.4.3awirebasketpreconditionerforlinearelasticity
8.5neumann-neumannandfetimethods
8.5.1aneumann-neumannalgorithmforlinearelasticity
8.5.2one-levelfetialgorithmsforlinearelasticity
8.5.3feti-dpalgorithmsforlinearelasticity
9preconditionersforsaddlepointproblems
9.1introduction
9.2blockpreconditioners
9.3flowsinporousmedia
9.3.1iterativesubstructuringmethods
9.3.2hybrid-mixedformulationsandspectral
equivalencieswithcrouzeix-raviartapproximations
9.3.3abalancingneumann-neumannmethod
9.3.4overlappingmethods
9.4thestokesproblemandalmostincompressibleelasticity.
9.4.1blockpreconditioners
9.4.2iterativesubstructuringmethods
9.4.3computationalresults
10problemsinh(dlv;)andh(curl;)
10.1overlappingmethods
10.1.1problemsinh(curl;)
10.1.2problemsinh(div;d)
10.1.3finalremarksonoverlappingmethodsand
numericalresults
10.2iterativesubstructuringmethods
10.2.1technicaltools
10.2.2aface-basedmethod
10.2.3aneumann-neumannmethod
10.2.4remarksontwo-dimensionalproblemsand
numericalresults
10.2.5iterativesubstructuringfornede1ecapproximation
inthreedimensions
11indefiniteandnonsymmetricproblems
11.1introduction
11.2algorithmsonoverlappingsubregions
11.3aniterativesubstructuringmethod
11.4numericalresults
11.4.1anonsymmetricproblem
11.4.2thehelmholtzequation
11.4.3avariable-coefficient,nonsymmetricindefiniteproblem
11.5additionaltopics
11.5.1convection-diffusionproblems
11.5.2thehelmholtzequation
11.5.3optimizedinterfaceconditions
11.5.4nonlinearandeigenvalueproblemsaellipticproblemsandsobolevspaces
a.1sobolevspaces
a.2tracespaces
a.3linearoperators
a.4poincareandfriedrichstypeinequalities
a.5spacesofvector-valuedfunctions
a.5.1thespaceh(div)
a.5.2thespaceh(curl;)intwodimensions
a.5.3thespaceh(curl;)inthreedimensions
a.5.4thekernelandrangeofthecurlanddivergenceoperators
a.6positivedefiniteproblems
a.6.1scalarproblems
a.6.2linearelasticity
a.6.3problemsinh(div;d)andh(curl;g)
a.7non-symmetricandindefiniteproblems
a.7.1generalizationsofthelax-milgramlemma
a.7.2saddle-pointproblems
a.8regularityresultsbgalerkinapproximations
b.1finiteelementapproximations
b.i.1triangulations
b.l.2finiteelementspaces
b.1.3symmetric,positivedefiniteproblems
b.l.4non-symmetricandindefiniteproblems
b.2spectralelementapproximations
b.3divergenceandcurlconformingfiniteelements
b.3.1raviart-thomaselements
b.3.2nedelecelementsintwodimensions
b.3.3nedelecelementsinthreedimensions
b.3.4thekernelandrangeofthecurlanddivergenceoperators
b.4saddle-pointproblems
b.4.1finiteelementapproximationsforthestokesproblem
b.4.2spectralelementapproximationsforthestokesproblem
b.4.3finiteelementapproximationsforflowsinporousmedia
b.5inverseinequalities.
b.6matrixrepresentationandconditionnumbercsolutionofalgebraiclinearsystems
c.1eigenvaluesandconditionnumber
c.2directmethods
c.2.1factorizations
c.2.2fill-in
c.3richardsonmethod
c.4steepestdescent
c.5conjugategradientmethod
c.6methodsfornon-symmetricandindefinitesystems
c.6.1thegeneralizedminimalresidualmethod
c.6.2theconjugateresidualmethod
references
index...
Domain decomposition methods : algorithms and theory = 区域分解算法 : 算法与理论 /
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×